
AdaControl User Guide

1

Last edited: 6 December 2006

AdaControl is Copyright c
 2005 Eurocontrol/Adalog, except for some speci�c modules that
are c
 2006 Belgocontrol/Adalog, c
 2006 CSEE/Adalog, or c
 2006 SAGEM/Adalog. AdaCon-
trol is free software; you can redistribute it and/or modify it under terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your op-
tion) any later version. This unit is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License distributed with this program;
see �le COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

As a special exception, if other �les instantiate generics from this program, or if you link
units from this program with other �les to produce an executable, this does not by itself cause
the resulting executable to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the executable �le might be covered by the GNU
Public License.

This document is Copyright c
 2005-2006 Eurocontrol/Adalog. This document may be
copied, in whole or in part, in any form or by any means, as is or with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodi�ed in any copy.

i

Table of Contents

1 Introduction . 2

2 Installation . 3

2.1 Prerequisites . 3
2.2 Building AdaControl. 3

2.2.1 Build with project �le . 3
2.2.2 Build with Make�le . 3
2.2.3 Installing support form GPS . 4

2.3 Testing AdaControl . 4
2.4 Customizing AdaControl . 4

3 Program Usage . 6

3.1 Running AdaControl from the command line . 6
3.2 Running AdaControl from GPS . 6

3.2.1 The AdaControl menu and button . 7
3.2.2 AdaControl switches . 8
3.2.3 AdaControl preferences . 8
3.2.4 AdaControl language . 9
3.2.5 AdaControl help . 9

3.3 Rules syntax . 9
3.3.1 Rule types and report messages . 9
3.3.2 Parameters . 11
3.3.3 Specifying an Ada entity name . 11

3.3.3.1 Overloaded names . 11
3.3.3.2 Enumeration literals . 12
3.3.3.3 Operators. 12
3.3.3.4 Attributes . 13
3.3.3.5 Anonymous constructs . 13
3.3.3.6 Record and protected types components. 13
3.3.3.7 Formals of access to subprogram types . 13

3.3.4 Multiple rules . 14
3.4 Commands . 14

3.4.1 Go command . 14
3.4.2 Quit command . 14
3.4.3 Message command . 14
3.4.4 Help command . 15
3.4.5 Clear command . 15
3.4.6 Set command . 15
3.4.7 Source command . 16
3.4.8 Inhibit command . 16
3.4.9 Example of commands . 16

3.5 Command line options and parameters . 16
3.5.1 Getting help . 17
3.5.2 Checking rules syntax . 17
3.5.3 Input units . 17
3.5.4 Specifying rules . 18
3.5.5 Output �le . 19

ii

3.5.6 Output format . 19
3.5.7 Interactive mode . 19
3.5.8 Local deactivation ignoring . 20
3.5.9 Verbose and debug mode . 20
3.5.10 Treatment of warnings . 20
3.5.11 Exit on error . 20
3.5.12 Project �les . 21

3.5.12.1 Emacs style project �les . 21
3.5.12.2 GPS project �les . 21

3.5.13 ASIS options . 21
3.6 Return codes . 21
3.7 Disabling rules . 22

3.7.1 Block disabling . 22
3.7.2 Line disabling . 22

3.8 Helpful utilities . 22
3.8.1 pfni . 22
3.8.2 Adactl -D . 23
3.8.3 makepat.sed . 23
3.8.4 unrepr.sed . 23

3.9 Optimizing AdaControl . 23
3.9.1 Tree �les and the ASIS context . 24
3.9.2 Generating tree �les manually . 24
3.9.3 Choosing an appropriate combination of options . 25

3.10 In case of trouble . 25

4 Rules Usage . 27

4.1 Abnormal Function Return . 27
4.1.1 Syntax . 27
4.1.2 Action . 27
4.1.3 tip . 27

4.2 Allocators . 27
4.2.1 Syntax . 27
4.2.2 Action . 27
4.2.3 Tips . 28

4.3 Array Declarations . 28
4.3.1 Syntax . 28
4.3.2 Action . 28

4.4 Barrier Expressions. 28
4.4.1 Syntax . 28
4.4.2 Action . 29
4.4.3 Tips . 29

4.5 Case Statement . 30
4.5.1 Syntax . 30
4.5.2 Action . 30
4.5.3 Limitations . 30

4.6 Control Characters . 30
4.6.1 Syntax . 30
4.6.2 Action . 30

4.7 Declarations . 31
4.7.1 Syntax . 31
4.7.2 action . 31
4.7.3 Tips . 33
4.7.4 Limitation. 33

4.8 Default Parameter . 34

iii

4.8.1 Syntax . 34
4.8.2 Action . 34
4.8.3 Limitations . 34

4.9 Directly Accessed Globals . 34
4.9.1 Syntax . 34
4.9.2 Action . 34
4.9.3 Tips . 35
4.9.4 Limitations . 35

4.10 Entities . 35
4.10.1 Syntax . 35
4.10.2 Action . 35
4.10.3 Tips . 35
4.10.4 Limitation . 36

4.11 Entity Inside Exception . 36
4.11.1 Syntax . 36
4.11.2 Action . 36

4.12 Exception Propagation . 36
4.12.1 Syntax . 36
4.12.2 Action . 37
4.12.3 Tips . 38
4.12.4 Limitations . 38

4.13 Expressions . 38
4.13.1 Syntax . 38
4.13.2 Action . 38

4.14 Global References . 39
4.14.1 Syntax . 39
4.14.2 Action . 39
4.14.3 Tips . 40

4.15 Header Comments . 40
4.15.1 Syntax . 40
4.15.2 Action . 40
4.15.3 Tips . 41

4.16 If For Case . 41
4.16.1 Syntax . 41
4.16.2 Action . 41

4.17 Instantiations . 41
4.17.1 Syntax . 41
4.17.2 Action . 41
4.17.3 Tips . 42

4.18 Insu�cient Parameters . 42
4.18.1 Syntax . 42
4.18.2 Action . 42
4.18.3 Tips . 43

4.19 Local Hiding . 43
4.19.1 Syntax . 43
4.19.2 Action . 43

4.20 Local Instantiation . 43
4.20.1 Syntax . 43
4.20.2 Action . 43

4.21 Max Blank Lines. 43
4.21.1 Syntax . 43
4.21.2 Action . 43

4.22 Max Call Depth . 44
4.22.1 Syntax . 44

iv

4.22.2 Action . 44
4.22.3 Tip . 44
4.22.4 Limitations . 44

4.23 Max Line Length . 44
4.23.1 Syntax . 44
4.23.2 Action . 44

4.24 Max Nesting . 45
4.24.1 Syntax . 45
4.24.2 Action . 45

4.25 Max Parameters . 45
4.25.1 Syntax . 45
4.25.2 Action . 45
4.25.3 Tips . 45

4.26 Max Statement Nesting . 45
4.26.1 Syntax . 45
4.26.2 Action . 46

4.27 Movable Accept Statements. 46
4.27.1 Syntax . 46
4.27.2 Action . 46
4.27.3 Tips . 46

4.28 Naming Convention . 46
4.28.1 Syntax . 46
4.28.2 Action . 48
4.28.3 Tips . 49
4.28.4 Limitations . 50

4.29 No Safe Initialization . 50
4.29.1 Syntax . 50
4.29.2 Action . 50
4.29.3 Limitation . 50

4.30 Non Static . 50
4.30.1 Syntax . 50
4.30.2 Action . 50

4.31 Not Elaboration Calls . 51
4.31.1 Syntax . 51
4.31.2 Action . 51
4.31.3 Limitations . 51

4.32 Parameter Aliasing . 51
4.32.1 Syntax . 51
4.32.2 Action . 51
4.32.3 Limitation . 52

4.33 Other Dependencies . 52
4.33.1 Syntax . 52
4.33.2 Action . 52

4.34 Potentially Blocking Operations . 52
4.34.1 Syntax . 52
4.34.2 Action . 52
4.34.3 Limitation . 53
4.34.4 Tips . 53

4.35 Pragmas . 53
4.35.1 Syntax . 53
4.35.2 Action . 53
4.35.3 Tips . 53

4.36 Reduceable Scope . 54
4.36.1 Syntax . 54

v

4.36.2 Action . 54
4.37 Representation Clauses . 54

4.37.1 Syntax . 54
4.37.2 Action . 54

4.38 Return Type . 54
4.38.1 Syntax . 54
4.38.2 Action . 54
4.38.3 Limitations . 55

4.39 Side E�ect Parameters . 55
4.39.1 Syntax . 55
4.39.2 Action . 55
4.39.3 Limitation . 55

4.40 Silent Exceptions. 56
4.40.1 Syntax . 56
4.40.2 Action . 56
4.40.3 Limitations . 56

4.41 Simpli�able Expressions . 57
4.41.1 Syntax . 57
4.41.2 Action . 57
4.41.3 Tips . 57

4.42 Special Comments . 57
4.42.1 Syntax . 57
4.42.2 Action . 58
4.42.3 Tips . 58
4.42.4 Limitations . 58

4.43 Statements . 58
4.43.1 Syntax . 58
4.43.2 Action . 58
4.43.3 Tips . 60

4.44 Style . 60
4.44.1 Syntax . 60
4.44.2 Action . 60
4.44.3 Tips . 62
4.44.4 Limitations . 62

4.45 Terminating Tasks . 63
4.45.1 Syntax . 63
4.45.2 Action . 63
4.45.3 Tips . 63

4.46 Uncheckable . 63
4.46.1 Syntax . 63
4.46.2 Action . 63
4.46.3 Tips . 63
4.46.4 Limitation . 64

4.47 Unnecessary Use Clause . 64
4.47.1 Syntax . 64
4.47.2 Action . 64
4.47.3 Limitations . 64

4.48 Unsafe Paired Calls . 65
4.48.1 Syntax . 65
4.48.2 Action . 65
4.48.3 Tips . 66
4.48.4 Limitation . 66

4.49 Unsafe Unchecked Conversion . 67
4.49.1 Syntax . 67

vi

4.49.2 Action . 67
4.49.3 limitation . 67

4.50 Usage . 67
4.50.1 Syntax . 67
4.50.2 action . 67
4.50.3 Tips . 68
4.50.4 Limitations . 69

4.51 Use Clauses. 69
4.51.1 Syntax . 69
4.51.2 Action . 69

4.52 With Clauses . 69
4.52.1 Syntax . 69
4.52.2 Action . 69
4.52.3 Tips . 70

5 Examples of using AdaControl for common programming
rules . 71

5.1 Rules �les provided with AdaControl . 71
5.2 Automatically checkable rules . 71
5.3 Rules that need manual inspection . 74

6 Non upward-compatible changes . 75

6.1 Migrating from 1.5r24 . 75
6.1.1 Declarations . 75
6.1.2 Naming Convention . 75
6.1.3 Non Static Constraint . 75
6.1.4 Positional Parameters . 75
6.1.5 Real Operator . 75
6.1.6 Style . 76

6.2 Migrating from 1.4r20 . 76
6.2.1 GPS integration . 76
6.2.2 Declarations . 76
6.2.3 Header Comments . 76
6.2.4 No Closing Name . 76
6.2.5 Speci�cation Objects . 77
6.2.6 Statement . 77
6.2.7 When Others Null . 77

7 Syntax of regular expressions . 78

Chapter 1: Introduction 2

1 Introduction

AdaControl is an Ada rules controller. It is used to control that Ada software meets the re-
quirements of a number of parameterizable rules. It is not intended to supplement checks made
by the compiler, but rather to search for particular violations of good-practice rules, or to check
that some rules are obeyed project-wide.

The development of AdaControl was initially funded by Eurocontrol
(http://www.eurocontrol.int), which needed a tool to help in verifying the mil-
lion+ lines of code that does Air Tra�c Flow Management over Europe. Because it was felt
that such a tool would bene�t the community at-large, and that further improvements made
by the community would bene�t Eurocontrol, it was decided to release AdaControl as free
software. Later, Eurocontrol, Belgocontrol, CSEE-Transport, and SAGEM-DS sponsored the
development of more rules.

The requirements for AdaControl were written by Philippe Waroquiers (Eurocontrol-
Brussels), who also conducted extensive testing on the Eurocontrol software. The software was
developped by Arnaud Lecanu and Jean-Pierre Rosen (Adalog). Some rules were contributed by
Richard Toy (Eurocontrol-Maastricht), Pierre-Louis Escou
aire (Adalog), and Alain Fontaine
(ABF consulting).

Commercial support is available for AdaControl, see �le doc/support.txt. If you plan to
use AdaControl for industrial projects, or if you want it to be customized or extended to match
your own needs, please contact Adalog at info@adalog.fr.

See �le HISTORY for a description of the various versions of AdaControl, including enhance-
ments of the current version over the previous ones. Users of a previous version are warned that
the rules are not 100% upward-compatible: this was necessary to make the rules more consistent
and easier to use. However, the incompatibilities are straightforward to �x and should a�ect
only a very limited number of �les. see Chapter 6 [Non upward-compatible changes], page 75
for details.

http://www.eurocontrol.int
mailto::info@adalog.fr

Chapter 2: Installation 3

2 Installation

AdaControl is distributed only as source. Like any ASIS application, AdaControl can be run
only if the compiler available on the system has exactly the same version as the one used to
compile AdaControl itself. Given the current proliferation of various versions of GNAT, it seems
better to let the user compile AdaControl himself, thus making sure that there is no mismatch.

Another reason for distributing AdaControl as source is that the user may not be interested
in all provided rules. It is very easy to remove some rules from AdaControl to increase its speed.
See Section 2.4 [Customizing AdaControl], page 4.

2.1 Prerequisites

The following software must be installed in order to install AdaControl:

� A GNAT compiler, any version. Note that the compiler is also required to use AdaControl
(all ASIS application need the compiler).

� ASIS for GNAT

Make sure to have the same version of GNAT and ASIS. The version used for running
AdaControl must be the same as the one used to compile AdaControl itself.

It should be possible to compile AdaControl with other compilers than GNAT, although we
didn't have an opportunity to try it. If you have another compiler that supports ASIS, note
that it may require some easy changes in the package Implementation_Options to give proper
parameters to the Associate procedure of ASIS. Rules that need string pattern matchings
need the package Gnat.Regpat. If you compile AdaControl with another compiler, you can
either port Gnat.Regpat to your system, or use a (limited) portable implementation of a simple
pattern matching (package String_Matching_Portable). Edit the �le string_matching.ads

and change it as indicated in the comments. No other change should be necessary.

Alternatively, if you are using another compiler, you can try and compile your program with
GNAT just to be able to run AdaControl. However, compilers often di�er in their support of
representation clauses, which can cause your program to be rejected by GNAT. In that case, we
provide a sed script to comment-out all representation clauses; this can be su�cient to allow
you to use AdaControl. See Section 3.8.4 [unrepr.sed], page 23.

2.2 Building AdaControl

2.2.1 Build with project �le

Simply go to the src directory and type:

gnatmake -Pbuild.gpr

You're done!

2.2.2 Build with Make�le

The previous method may fail if Asis is not installed in an usual place. As an alternative method,
it is possible to build AdaControl with a regular Make�le.

The �le Makefile (in directory src) should be modi�ed to match the commands and paths
of the target system. The following variables are to be set:

� ASIS TOP

� ASIS INCLUDE

� ASIS OBJ

� ASIS LIB

Chapter 2: Installation 4

� RM

� EXT

How to set these variables properly is documented in Makefile.

Then, run the make command:

$ cd src

$ make build

It is also possible to delete object �les and do other actions with this \Make�le", run the
following command to get more information:

$ make help

NOTE: Building AdaControl needs the \make" command provide with GNAT; it works both
with WIN32 shell and UNIX shell.

2.2.3 Installing support form GPS

To add AdaControl support to GPS, simply copy all the �les from the GPS directory into the
<GPS_dir>/share/gps/plug-ins directory. Copy also the �les doc/adacontrol_ug.html and
doc/adacontrol_pm.html into the <GPS_dir>/share/doc/gps/html to access AdaControl's
guides from the "Help" menu of GPS.

2.3 Testing AdaControl

Testing AdaControl needs a UNIX shell, so it works only with UNIX systems. However, it is
possible to run the tests on a WIN32 system by using an UNIX-like shell for WIN32, such as
those provided by CYGWIN or MSYS. To run the tests, enter the following commands:

$ cd test

$./run.sh

All tests must report PASSED. If they don't, it may be because you are using an old version
of Gnat (and especially 3.15p). AdaControl runs without any known problem (and it has been
checked against the whole ACATS) only with the latest GnatPro version; earlier versions are
known to have bugs and unimplemented features that will not allow AdaControl to run correctly
in some cases. We strongly recommend to always use the most recent version of Gnat.

2.4 Customizing AdaControl

If there are some rules that you are not interested in, it is very easy to remove them from
AdaControl:

1. In the src directory, edit the �le framework-plugs.adb. There is a with clause for each
rule (children of package Rules). Comment out the ones you don't want.

2. Recompile framework-plugs.adb. There will be error messages about unknown procedure
calls. Comment out the corresponding lines.

3. Compile AdaControl normally. That's all!

It is also possible to add new rules to AdaControl. If your favorite rules are not currently
supported, you have several options:

1. If you have some funding available, please contact info@adalog.fr. We'll be happy to make
an o�er to customize AdaControl to your needs.

2. If you don't have funding, but have some knowledge of ASIS programming, you can add the
rule yourself. We have made every e�ort to make this as simple as possible. Please refer to
the AdaControl programmer's manual for details. If you do so, please send your rules to
rosen@adalog.fr, and we'll be happy to integrate them in the general release of AdaControl
to make them available to everybody.

mailto::info@adalog.fr
mailto::rosen@adalog.fr

Chapter 2: Installation 5

3. If you have good ideas, but don't feel like implementing them yourself (nor �nancing them),
please send a note to rosen@adalog.fr. We will eventually incorporate all good suggestions,
but we can't of course commit to any dead-line in that case.

mailto::rosen@adalog.fr

Chapter 3: Program Usage 6

3 Program Usage

3.1 Running AdaControl from the command line

AdaControl is a command-line program, i.e. it's callable directly by a system shell, and can be
integrated in GUIs such as GPS (see Section 3.2 [Running AdaControl from GPS], page 6) or
emacs (see Section 3.3.1 [Rule types and report messages], page 9). It is very simple to use. It
takes, as parameters, a list of units to process and a set of rules to apply. AdaControl produces
error and/or found messages to the standard output. The type of message (i.e. error or found)
depends on the type of the rule (i.e. check or search). It is also possible to locally disable rules
for a part of the source code, and various options can be passed to the program.

Ex:

Given the following package:

package Pack is
pragma Pure (Pack);

...

end Pack;

The following command:

adactl -l "search pragmas (pure)" pack

produces the following result (displayed to standard output):

pack.ads:2:4: Found: PRAGMAS: use of pragma Pure

Caveat:

If your project includes source �les located in several directories, the ADA INCLUDE PATH
environment variable is not always considered by ASIS, resulting in error messages that tell you
that the bodies of some units have not been found (and hence not processed). This problem has
been �xed in Gnat dated later than Sept. 1st, 2006. If this happens, either provide your source
directories as \-I" options (see Section 3.5.13 [ASIS options], page 21), or generate the tree �les
manually (see Section 3.9.2 [Generating tree �les manually], page 24). Note that this problem
does not happen if you are using Emacs project �les (see Section 3.5.12 [Project �les], page 21),
nor if you are running AdaControl from GPS.

AdaControl can process only Ada-95, not Ada-2005, since there no ASIS for Ada-2005 yet.
If you are using a version of GNAT where Ada-2005 is the default (especially GNAT-GPL),
and in the rare cases where your program would not compile in Ada-2005 mode (notably if you
have a function that returns a task type), you must force Ada-95 mode by having a \gnat.adc"
�le that contains a pragma Ada_95, since the corresponding option cannot be passed to the
compiler in \compile on the
y" mode. Alternatively, you can generate the tree �les manually
(see Section 3.9.2 [Generating tree �les manually], page 24) with the \-gnat95" option.

3.2 Running AdaControl from GPS

If you want to use AdaControl from GPS, make sure you have copied the necessary �les into
the required places. See Section 2.2 [Building AdaControl], page 3.

AdaControl integrates nicely into GPS, making it even easier to use. It can be launched from
menu commands, and parameters can be set like any other GPS project parameters. When run
from within GPS, AdaControl will automatically retrieve all needed directories from the current
GPS project.

After running AdaControl, the \locations" panel will open, and you can retrieve the locations
of errors from there, just like with a regular compilation. Errors will be marked in red in the
source, warning will be marked orange, and you will have corresponding marks showing the

Chapter 3: Program Usage 7

places of errors and warnings in the speedbar. Note that AdaControl errors appear under
the \AdaControl" category, but if there were compilation errors, they will appear under the
\Compilation" category.

3.2.1 The AdaControl menu and button

GPS now features an \AdaControl" menu, with several submenus:

� \Control Current File (rules �le)" runs AdaControl on the currently edited �le, with rules
taken from the current rules �le; this menu is greyed-out if no rules �le is de�ned, if no
�le window is currently active, or if the associated language is not \Ada". The name of
the rules �le can be set from the \Library" tab from the \Project/Edit Project Properties"
menu.

� \Control Root Project (rules �le)" runs AdaControl on all units that are part of the root
project, with rules taken from the current rules �le; this menu is greyed-out if no rules �le is
de�ned. The name of the rules �le can be set from the \Library" tab from the \Project/Edit
Project Properties" menu.

� \Control Units from List (rules �le)" runs AdaControls on units given in a indirect �le, with
rules taken from the current rules �le. This menu is greyed-out if no rules �le is de�ned or
if no indirect �le is de�ned. The name of the rules �le and of the indirect �le can be set
from the \Library" tab from the \Project/Edit Project Properties" menu.

� \Control Current File (interactive)" runs AdaControl on the currently edited �le, with a
rule asked interactively from a pop-up; this menu is greyed-out if no �le window is currently
active, or if the associated language is not \Ada".

� \Control Root Project (interactive)" runs AdaControl on all units that are part of the root
project, with a rule asked interactively from a pop-up.

� \Control Units from List (interactive)" runs AdaControls on units given in a indirect �le,
with a rule asked interactively from a pop-up. This menu is greyed-out if no indirect
�le is de�ned. The name of the indirect �le can be set from the \Library" tab from the
\Project/Edit Project Properties" menu.

� \Check Rules File" checks the syntax of the current rules �le. This menu is deactivated if
the current window does not contain an AdaControl rules �le.

� \Open Rules File" opens the rules �le. This menu is deactivated if there is no current rules
�le de�ned.

� \Open Units File" opens the units �le. This menu is deactivated if there is no current units
�le de�ned.

� \Delete Tree Files" removes existing tree �les from the current directory. This is convenient
when AdaControl complains that the tree �les are not up-to-date. Note that you can set
the preferences for automatic deletion of tree �les after each run (see below). Note that the
name of this menu is changed to \Delete Tree and .ali Files" if you have chosen to delete
.ali �les in the preferences (see below).

� \Create .adp project" create an Emacs-style project �le from the current GPS project,
which can be used with the \-p" option if you want to run AdaControl from the command
line. This �le has the same name as the current GPS project, with a \.adp" extension. See
Section 3.5.12 [Project �les], page 21.

There is also a button representing Lady Ada in a magni�er glass in the toolbar; clicking
this button is the same as selecting \Control Current File (rules �le)".

Here are some tips about using the \interactive" menus:

� When you use the \interactive" menus several times, the previously entered command(s) is
used as a default.

Chapter 3: Program Usage 8

� You can enter any command from AdaControl's language in the dialog; you can even enter
several commands separated by \;".

� Especially, if you want to run AdaControl with a rules �le that is not the one de�ned by
the switches, you can use one of the \interactive" commands, and give \source <�le name>"
as the command.

3.2.2 AdaControl switches

The tab \switches" from the \Project/Edit Project Properties" menu includes a page for Ada-
Control, which allows you to set various parameters.

� \Recursive mode". This sets the \-r" option. See Section 3.5.3 [Input units], page 17.

� \Ignore local deactivation". This sets the \-r" option. See Section 3.5.8 [Local deactivation
ignoring], page 20.

� \Process specs only". This sets the \-s" option. See Section 3.5.3 [Input units], page 17.

� \Compilation unit mode". This sets the \-u" option. See Section 3.5.3 [Input units],
page 17.

� \Display only errors". This sets the \-E" option. See Section 3.5.10 [Treatment of warnings],
page 20.

� \Warnings as errors". This sets the \-e" option. See Section 3.5.10 [Treatment of warnings],
page 20.

� \Statistics". This sets the \-S" option from a pull-down menu. See Section 3.3.1 [Rule
types and report messages], page 9.

� \Send results to GPS". When checked (default), the output of AdaControl is sent to the
\locations" window of GPS.

� \Send results to File". When checked, the output of AdaControl is sent to the �le indicated
in the box below.

� \File name". This is the name of the �le that will contain the results when the previous
button is checked. If the �le exists, AdaControl will ask for the permission to override it.

� \File format". This is a pull-down menu that allows you to select the desired format when
output is directed to a �le (\-F" option). See Section 3.3.1 [Rule types and report messages],
page 9.

� \Debug messages". This sets the \-d" option. See Section 3.5.9 [Verbose and debug mode],
page 20.

� \Halt on error". This sets the \-x" option. See Section 3.5.11 [Exit on error], page 20.

Since the GPS interface analyzes the output of AdaControl, you should not set options
directly in the bottom window of this page.

3.2.3 AdaControl preferences

There is an entry for AdaControl in the \edit/preferences" menu:

� \delete trees". If this box is checked, tree �les are automatically deleted after each run
of AdaControl. This avoids having problems with out-of-date tree �les, at the expanse of
slightly slowing down AdaControl if you run it several times in a row without changing the
source �les.

� \Delete .ali �les with tree �les". If this box is checked, the \.ali" �les in the current
directory will also be deleted together with the tree �les (either automatically if the previous
box is checked, or when the \AdaControl/Delete Tree Files" menu is selected). This is
normally what you want, unless the current directory is also used as the object directory
for compilations; in the latter case, deleting \.ali" �les would cause a full recompilation for
the next build of the project.

Chapter 3: Program Usage 9

� \Help on rule". This allows you to select how rule speci�c help (from the
\Help/AdaControl/Help on rule" menu) is displayed. If you select \Pop-up", a summary
of the rule's purpose and syntax is displayed in a pop-up. If you select \User Guide",
the user guide opens in a browser at the page that explains the rule. (Caveat: due to a
problem in GPS, the browser does not �nd the right anchor; hopefully, this will be �xed in
an upcomming release of GPS).

� \Use separate categories". If this box is checked, there will be one category (i.e. tree in
the locations window) for each rule type or label, otherwise all messages will be grouped
under the single category \AdaControl". In practice, this means that with the box checked,
messages will be sorted by rules �rst, then by �les, while otherwise, the messages will be
sorted by �les �rst, then by rules.

3.2.4 AdaControl language

If you check \AdaControl" in the \Languages" tab, GPS will recognize �les with extension .aru

as AdaControl rules �les, and provide appropriate colorization.

3.2.5 AdaControl help

The AdaControl User Manual (this manual) and the AdaControl Programmer Manual are avail-
able from the "Help/AdaControl" menu of GPS. In addition, there is a "Help on rule" entry in
this menu. This entry displays the list of all rules; if you click on one of them, it displays the
rule(s) purpose and the syntax of its parameters.

3.3 Rules syntax

AdaControl is about checking rules. Each rule has a name, and may require parameters. Which
rules are to be checked is speci�ed either on the command line or in a rules �le; in either case,
the syntax for specifying rules is as follows:

[<label> ":"] "check"|"search"|"count" <Name>

["(" [<modifiers>] <parameter> {"," [<modifiers>] <parameter>}")"] ";"

If present, the label gives a name to the rule; it will be printed whenever the rule is activated,
and can be used to disable the rule. See Section 3.7 [Disabling rules], page 22. If no label is
present, the rule name is printed instead. The label must have the syntax of an Ada identi�er,
or else the label must be included within double quotes ("), in which case it can contain any
character. Note that there is no problem in specifying the same label for several rules.

Each rule consists of a rule type followed by a rule name, and (optionally) parameters. Some
parameters may be preceded by modi�ers (such as \not" or \case sensitive"). The meaning of
the rule parameters and modi�ers depends on the rule. The case of the rule type, rule name,
and parameters is not signi�cant. If a syntax error is encountered in a rule, an appropriate error
message is output, and analysis of the rules �le continues in order to output all errors, but no
analysis of user code will be performed.

Since wide characters are allowed in Ada programs, AdaControl accepts wide characters in
rules as well. With GNAT, the encoding scheme is Hex ESC encoding (see the GNAT User-
Guide/Reference-Manual). This is the prefered method, since few people require wide characters
in programs anyway, and that keeping the default bracket encoding would not conveniently allow
brackets for regular expressions, like those used by some rules. See Chapter 7 [Syntax of regular
expressions], page 78.

3.3.1 Rule types and report messages

There are three rule types:

� check

Chapter 3: Program Usage 10

� search

� count

\Check" is intended to search for rules that must be obeyed in your programs. Normally, if a
\Check" rule fails, you should �x the program. \Search" is intended to report some situations,
but you should consider what to do on a case-by-case basis. Roughly, use \check" when you
consider that the failure of the rule is an error, and \search" when you consider it as a warning.
AdaControl will exit with a status of 1 if any \Check" rule is triggered, and a status of 0 if only
\Search" rule were triggered (or no rule was triggered at all).

\Count" works like \search", but instead of printing a message for each rule which is triggered,
it simply counts occurrences and prints a summary at the end of the run. There is a separate
count for each rule label (or if no label is given, the rule name is taken instead); if you give the
same label to di�erent rules, this allows you to accumulate the counts.

A report message (except for the �nal report of \count") comprises the following elements:

� the �le name (where the rule matches)

� the line number (where the rule matches)

� the column number (where the rule matches)

� the rule label (if there is one) and/or the rule id (the rule that matches).

� a message (why the rule matches). A rule whose type is \check" will produce an error
report message (i.e. containing the keyword ERROR) and a rule use whose type is \search"
will produce a found report message (i.e. containing the keyword FOUND).

The formatting of the report message depends on the format option, which can be selected
with the \-F" command-line option or the \set format" command.

If the format is \Gnat" (the default) or \Gnat Short", items are separated by ':'; this is
the same format as the one used by GNAT error messages. Editors (like Emacs or GPS) that
recognize this format allow you to go directly to the place of the message by clicking on it. In
order to avoid too long messages, only the rule label appears, unless there is none, in which case
it is replaced with the rule id.

If the format is \CSV" or \CSV Short", items are separated by ',' and surrounded by double
quotes. This is the \Comma Separated Values" format, which can be read by any known
spreadsheet program, except Excel(tm), which uses the semicolon and not the comma to separate
�elds. Therefore, the formats \CSVX" and \CSVX Short" do the same thing, but using semi-
colons (';') instead of commas. Both the rule label (replaced by an empty column if there is
none) and the rule id appear.

If the format is \source" or \source short", the o�ending source line is output, and the
message is output behind it, with a \!" pointing to the exact location of the problem.

With recent versions of Gnat, the �le name includes the full path of the source �le. If the
\ Short" form of the format option is used, the �le name is stripped from any path. This can
make it easier to compare the results of controlling units from various directories. Note that
with older versions of Gnat, the �le name never includes the full path, and the \ Short" form
of the format option has no e�ect.

After each \go" command, statistics may be output, depending on the statistics level which
is set with the \-S" option or the \set statistics" command. The meaning of the various levels
is as follows:

� 0: No statistics are output (default)

� 1: A count of error and warning messages is output

� 2: The rule name and label (if any) of any rule not triggered are output

� 3: The rule name and label (if any) of every rule is output, together with a count of each
triggering type (check, search, count), or \not triggered" if the rule was not triggered.

Chapter 3: Program Usage 11

3.3.2 Parameters

Most rules accept parameters. Parameters can be:

� a keyword for the rule

� a numerical value

� a character string (often a regular expression)

� an Ada entity name

A numerical value is given with the syntax of an Ada integer or real literal (underscores are
allowed as in Ada). Based literals are not currently supported; if somebody can justify a need
for them, we'll be happy to add this feature later...

A character string (actually, any parameter whose value does not follow the rules of Ada
identi�ers or numeric literals) is given within double quotes \"". The tilde character (\~") can
also be used as a replacement, but the same character must be used at both ends of the string.
The latter has been chosen as a character not used by the various shells, and can be useful to
pass quoted strings from parameters on the command line.

An Ada entity name can be followed by overloading information (see below), in order to
uniquely identify the Ada entity. If an Ada entity is overloaded and no overloading information
is provided, the rule is applied to all (overloaded) Ada entities that match the name.

3.3.3 Specifying an Ada entity name

The syntax of the <Ada Entity Name> is as follows:

<Ada_Entity_Name> ::= <Full_Name> | "all" <Simple_Name> | "all" <Attribute>

<Full_Name> is the full name of the Ada entity, using normal Ada dot notation (with some
extensions, see below)). Full name means that you give the full expanded name, starting from
a compilation unit. This name must be the actual full name, i.e. it must not include any
renaming (otherwise the name will not be recognized). For example, the usual Put_Line must
be given as Ada.Text_IO.Put_Line, not as Text_IO.Put_Line. Prede�ned elements (Integer,
Constraint_Error) must be given in the form Standard.Integer or Standard.Constraint_
Error, since they are logically declared in the package Standard.

<Simple_Name> is a single identi�er, possibly followed by overloading information. No qual-
i�cation is allowed.

<Attribute> is an attribute name, including the quote. No overloading information is al-
lowed.

<Full_Name> designates a single entity or several overloaded entities declared in the same
place (as identi�ed by the pre�x), while all <simple_name> designates all identi�ers with the
given name in the program, irrespectively of where they appear. all <Attribute> designates
all occurrences of the given attribute, irrespectively of what the attribute applies to.

A utility is provided with AdaControl to help you �nd the full name of an entity. See
Section 3.8.1 [pfni], page 22.

3.3.3.1 Overloaded names

In Ada, names can be overloaded. This means that you can have several procedures P in
package Pack, if they di�er by the types of the parameters. If you just give the name Pack.P as
the <Ada Entity Name>, the corresponding rule will be applied to all elements named P from
package Pack. If you want to distinguish between overloaded names, you can specify a pro�le
after the element's name. A pro�le has the syntax:

"{" [["access"] <type-name>

{ ";" ["access"] <type-name> }]

["return" <type-name>] "}"

Chapter 3: Program Usage 12

You must specify the type name, even if the <Ada Entity Name> declaration uses a subtype
of the type; this is because Ada uses types for overloading resolution, not subtypes. Anonymous
access parameters are speci�ed by putting access in front of the type name. An overloaded
name for a procedure without parameters uses just a pair of empty brackets. If the subprogram
is a function, you must provide the return <type-name> part for the return type of the function.
The types must also be given as a unique name, i.e. including the full path: if the type is T
declared in package Pack, you must specify it as Pack.T. As a convenience, the Standard. is
optional for prede�ned types, so you can write Standard.Integer as Integer. There is no
ambiguity, since a type is always declared within some construct. Note that omitting Standard

works only for types that are part of the pro�le used to distinguish between overloaded Ada
entities but that the Ada entity name must always contain Standard if it is a prede�ned element.

Overloaded names can be also be used with the all <Simple_Name> form of the
<Ada Entity Name>. In this case, the rule will be applied to all names that are subprograms
with the given identi�er and matching the given pro�le, irrespectively of where they appear.

Note that if you use an overloaded name, all overloadable names that are part of the
<Ada Entity Name>, including those of the pro�le, must use the overloaded syntax. For exam-
ple, given the following program

procedure P is
procedure Q (I : Integer) is

...

end Q;

procedure Q (F : Float) is
...

end Q;

begin
...

end P;

If you want to distinguish between the two procedures Q, you must specify them as
P{}.Q{Integer} and P{}.Q{Float} (note the P{} which speci�es an overloaded name for a
procedure P without parameters).

The names of entities which can not be overloaded (like package, exception, . . .) must not
be su�xed by braces (e.g. Ada.Text_IO.Put_Line{Standard.String}).

3.3.3.2 Enumeration literals

Following normal Ada rules, an enumeration literal is considered a parameterless function. If
you want to distinguish between overloaded enumeration literals, you can use overloaded names
for them. For example, given:

package Pack is
type T1 is (A, B);

type T2 is (B, C);

end Pack;

Ada entities names are:

� Pack.B{return Pack.T1}

� Pack.B{return Pack.T2}

3.3.3.3 Operators

AdaControl handles operators (i.e. functions like "+") correctly. Of course, you must specify
such operations using normal Ada syntax: if you de�ne the integer type T in package Pack, an
overloaded name for the addition would be Pack."+"{Pack.T; Pack.T return Pack.T}.

Chapter 3: Program Usage 13

3.3.3.4 Attributes

It is also possible to designate attributes, using the normal notation (i.e.
Standard.Integer'First). If the name of an attribute which is a function appears
in a name that uses the overloaded syntax, it is not necessary (and actually not allowed) to
provide its pro�le, since there is no possible ambiguity in that case. For example, given:

procedure P (I : Integer) is
type T is range 1 .. 10;

begin
...

end P;

You can designate the 'Image attribute for type T as P{Standard.Integer}.T'Image (the
pro�le of the 'Image function is not given, as would be necessary for a normal function).

3.3.3.5 Anonymous constructs

There is a special case for elements that are de�ned (directly or indirectly) within unnamed loops
or block statements. Everything happens as if the unnamed construct was named _anonymous_.
So if you have the following program:

procedure P is
begin

for I in 1..10 loop
declare

J : Integer;

begin
...

end;
end loop;

end P;

You can refer to I as P._anonymous_.I, and to J as P._anonymous_._anonymous_.J.

3.3.3.6 Record and protected types components

You can designate the name of a record or protected type component (a \�eld" name), but
to identify it uniquely, you must precede its name by the name of the type. This is a small
extension to Ada syntax, but it is the simplest and most natural way to deal with this case. For
example, given:

procedure P is
type T is

record
Name : Integer;

end record;
...

The Ada entity name is P.T.Name.

3.3.3.7 Formals of access to subprogram types

Similarly, you can designate the formal of an access to subprogram type by pre�xing it by the
access type. For example, given:

procedure P is
type T is access procedure (X : Integer);

...

The Ada entity name of the formal is P.T.X.

Chapter 3: Program Usage 14

3.3.4 Multiple rules

Most rules can be given more than once (with di�erent parameters). There is no di�erence
between a single or a multiple con�guration rule use: outputs, e�ciency, etc. are the same.

The following con�guration �les produce an identical con�guration:

Search Pragmas (Pure, Elaborate_All);

and

Search Pragmas (Pure);

Search Pragmas (Elaborate_All);

However, the second form can be used to give di�erent labels. Consider:

Search Pragmas (Pure);

No_Elaborate: Search Pragmas (Elaborate_All);

The messages for pragma Pure will contain \PRAGMAS", while those for Elaborate_All
will contain \No Elaborate". If a disabling comment mentions pragmas, it will disable both
rules, but a disabling comment that mentions No_Elaborate will disable only the second one.

3.4 Commands

In addition to rules speci�cation, AdaControl recognizes a number of commands. Although these
commands are especially useful when using the interactive mode (see Section 3.5.7 [Interactive
mode], page 19), they can be used in command �les as well.

3.4.1 Go command

Syntax:

go;

This command starts processing of the rules that have been speci�ed. Rules are not reset
after a \go" command; for example, the following program:

search entities (pack1);

go;

search entities (pack2);

go;

will �rst output all usages of Pack1, then all usages of both Pack1 and Pack2. See Section 3.4.5
[Clear command], page 15 to reset rules.

If not in interactive mode, a \go" command is automatically added, therefore it is not required
in rules �les.

3.4.2 Quit command

Syntax:

quit;

This command terminates AdaControl. If given in a �le, all subsequent commands will be
ignored. This command is really useful only in interactive mode. See Section 3.5.7 [Interactive
mode], page 19.

3.4.3 Message command

Syntax:

message <any string>;

This command prints the given message on the output �le. The length of the message is
limited to 250 characters.

Note that the message is terminated by the �rst \;" encountered. If a message needs to
include a \;", the hole message must be quoted (double quotes).

Chapter 3: Program Usage 15

3.4.4 Help command

Syntax:

Help [all | <rule name>{,<rule name>}];

Without any argument, this command prints a summary of all commands and rule names.
If given one or more rule names, it prints the detailed help for the given rules. If given the
keyword all, it prints the detailed help for all rules.

3.4.5 Clear command

Syntax:

Clear all | <rule name>{,<rule name>} ;

This command clears all \count", \search", and \check" commands given for the indicated
rules, of for all rules if the all keyword is given. For example, the following program:

search entities (pack1);

go;

clear all;

search entities (pack2);

go;

will �rst output all usages of Pack1, then all usages of Pack2. Without the \clear all"
command, the second \go" would output all usages of Pack1 together with all usages of Pack2.

3.4.6 Set command

Syntax:

set Format Gnat | Gnat_Short | CSV | CSV_Short | source | source_short

set Output <output file>;

set Statistics <level>

set Trace <trace file>;

set Verbose | Debug | Ignore | Warning On | Off

In the �rst form, this commands selects the output format for the messages, like the \-F"
option; see Section 3.3.1 [Rule types and report messages], page 9 for details.

In the second form, this command redirects the output of subsequent checks to the indicated
�le. If the string console (case irrelevant) is given as the <output �le>, output is redirected to
the console.

As with the \-o" option, if the �le exists, output is appended to it, unless the \-w" option
is given, in which case it is overwritten. However, the �le is overwritten only the �rst time it is
mentionned in an \output" command. This means that you can switch forth and back between
two output �les, all results from the same run will be kept. Note however that for this to work,
you need to specify the output �le exactly the same way: if you specify it once as \result.txt",
and then as \./result.txt", the second one will overwrite the �rst one.

In the third form, this command redirects the trace messages of the \-d" option to the
indicated �le. If the string console (case irrelevant) is given as the <trace �le>, trace messages
are redirected to the console. As with the \-t" option, if the �le exists, output is appended to
it.

In the fourth form, this command allows to set the statistics level, like the \-S" option; see
Section 3.3.1 [Rule types and report messages], page 9 for details.

In the �fth form, this command allows to activate (\on") or deactivate (\o�") options.
\Verbose" corresponds to the \-v" option, \Debug" to the \-d" option, \Ignore" to the \-
i" option, and \Warning" to the \-E" option. See Section 3.5.9 [Verbose and debug mode],
page 20, Section 3.5.10 [Treatment of warnings], page 20, and Section 3.5.8 [Local deactivation
ignoring], page 20 for details.

Chapter 3: Program Usage 16

3.4.7 Source command

Syntax:

Source <input file>;

This command redirects the input of commands from the indicated �le. Commands and rules
are read and executed from the indicated �le, then control is returned to the place after the
\source" command. There is no restriction on the content of the sourced �le; especially, it may
itself include other \source" commands.

If the string console (case irrelevant) is given as the <input �le>, commands are read from
the console until a \quit" command is given. This command is of course useful only from �les,
and allows to pass temporarily control to the user in interactive mode.

3.4.8 Inhibit command

Syntax:

Inhibit <rule name>|all ([all] <unit> {,[all] <unit>});

This command will inhibit execution of the rule (or all rules if \all" is speci�ed in place of a
rule name) for the indicated unit(s). In addition, if \all" is given in front of the unit name, the
unit will not be accessed at all, even from rules that follow call graphs, and could thus access
this unit while analyzing other units.

There are several reasons why you might want to inhibit a rule for certain units:

� The unit is known not to obey the rule in many places, and you don't want the output to
be cluttered with too many messages (of course, you'll �x the unit in the near future!);

� The unit is known to obey the rule, and you want to save some processing time;

� The unit is known to raise an ASIS bug, and until you upgrade to the appropriate version
of GNAT, you don't want to be bothered by the error messages.

The \all" option is intended for the last case, to prevent ASIS bugs from spoiling any unit
that calls something from an o�ending unit.

3.4.9 Example of commands

Below is an example of a �le with multiple commands:

message "Searching Unchecked_Conversion";

search entitities (ada.unchecked_conversion);

set output uc_usage.txt;

go;

clear all;

message "Searching 'Address";

search attribute (address);

set output address_usage.txt;

go;

This �le will output all usages of Ada.Unchecked_Conversion into the �le uc_usage.txt,
then output all usages of the 'Address attribute into the �le address_usage.txt. Messages
are output to tell the user about what's happenning.

3.5 Command line options and parameters

Options are introduced by a \-" followed by a letter and can be grouped as usual. Some options
take the following word on the command line as a value; such options must appear last in a
group of options. Parameters are words on the command line that stand by themselves. Options
and parameters can be given in any order.

The complete syntax for invoking AdaControl is:

Chapter 3: Program Usage 17

adactl [-deEiIrsuvw] [-f <rules file>] [-l <rules list>] [-o <output file>]

[-F <format>] [-p <project file>] [-S <statistics level>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

or

adactl -h [<rule id>... | all]

or

adactl -C [-v] [-f <rules file>] [-l <rules list>]

or

adactl -D [-rsw] [-o <output file>] [-p <project file>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

Using AdaControl with the \-D" option is described later. See Section 3.8 [Helpful utilities],
page 22.

3.5.1 Getting help

The \-h" option alone displays a help message about usage of the AdaControl program, the
various options, and the rule names. If the \-h" is followed by one or several rule names (case
irrelevant), it displays the help message for the rule(s). If the \-h" option is followed by the
keyword \all", it displays the help message for all rules. If the \-h" option is followed by the
keyword \list", it simply lists the names of all rules (note that \-h" without parameters also
displays the list of rules, in a prettier format; this option is mainly useful for the integration of
AdaControl into GPS).

Ex:

adactl -h

adactl -h pragmas Unnecessary_Use_Clause

adactl -h all

Note that if the \-h" option is given, no other option is analyzed and no further processing
happens.

3.5.2 Checking rules syntax

If the \-C" option is given, AdaControl will simply check the syntax of the rule provided with
the \-l" option, or of the rules provided in the �le named by the \-f" option (at least one of
these options must be provided). No other processing will happen.

AdaControl will exit with a return code of 0 if the syntax is correct, and 2 if any errors are
found. A con�rming message that no errors were found is output if the \-v" option is given.

This option is especially useful when you have modi�ed a rules �le, before trying it on many
units. The way AdaControl works, it must open the ASIS context (a lengthy operation) before
analyzing the rules. This option can therefore save a lot of time if the rules �le contains errors.

3.5.3 Input units

Units to be processed are simply given as parameters on the command line. Note that they
are Ada compilation unit names, not �le names: case is not signi�cant, and there should be no
extension! Of course, child units are allowed following normal Ada naming rules: Parent.Child,
but be aware that specifying a child unit will automatically include its parent unit in the analysis.
All subunits are processed during the analysis of the including unit; there is therefore no need
to specify subunits explicitely. If you do specify a subunit explicitly, it will result in the whole
enclosing unit being analyzed.

However, as a convenience to the user, units can be speci�ed as �le names, provided they
follow the default GNAT naming convention. More precisely, if a parameter ends in \.ads" or

Chapter 3: Program Usage 18

\.adb", the unit name is extracted from it (and all \-" in the name are substituted with \."). File
names can include a path; in this case, the path is automatically added to the list of directories
searched (\-I" option). The �le notation is convenient to process all units in a directory, as in
the following example:

adactl -f my_rules.aru *.adb

In the unlikely case where you have a child unit called Ads or Adb, use the \-u" option to
force interpretation of all parameters as unit names.

By default, both the speci�cation and body of the unit are processed; however, it is possible
to specify processing of the speci�cation only by providing the \-s" option. If only �le names
are given, the \-s" option is assumed if all �les are speci�cations (\.ads" �les). It is not possible
to specify processing of bodies only, since rules dealing with visibility would not work.

The \-r" option tells AdaControl to process (recursively) all user units that the speci�ed
units depend on (including parent units if the unit is a child unit or a subunit). Prede�ned Ada
units and units belonging to the compiler's run-time library are never processed.

Ex:

adactl -r -f my_rules.aru my_main

will process my_main and all units that my_main depends on. If my_main is the main proce-
dure, this means that the whole program will be processed.

It is possible to specify more than one unit (not �le) to process in a parameter by separating
the names with \+". Conversely, it is possible to specify units that are not to be processed,
separated by \-". When a unit is subtracted from the unit list, it is never processed even if
it is included via the recursive option, and all its child and separate units are also excluded.
This is convenient to avoid processing reusable components, that are not part of a project. For
example, if you want to run AdaControl on itself, you should use the following command:

adactl -f my_rules_file.aru -r adactl-asis-a4g

This applies the rules from the �le my_rules_files.aru to AdaControl itself, but not to
units that are part of ASIS (the \-r" (recursive) option would �nd them otherwise).

Alternatively, it is possible to give a parameter as an \@" followed by the name of a �le. This
�le must contain a list of unit names (not �les), one on each line. All units whose names are
given in the �le will be processed. If a name in the �le starts with \@", it will also be treated
as an indirect �le (i.e. the same process will be invoked recursively). If a line in the �le starts
with \#" or \{", it is ignored. This can be useful to temporarily disable the processing of some
�les or to add comments.

Ex:

adactl -f my_rules.aru @unit_file.txt

3.5.4 Specifying rules

Rules list can be passed on the command line using the \-l" option. Rules list must be quoted
with \"".

Ex:

adactl pack.ads proc.adb -l "check instantiations (My_Generic);"

It is possible to pass several rules separated by \;" as usual, but as a convenience to the user,
the last \;" may be omitted.

Rules list can also be passed from a �le, whose name must be given after the \-f" option. As
a special case, if the �le name is \-", rules are read from the standard input. This is intended to
allow AdaControl to be pipelined behind something that generates commands; if you want to
type rules directly to AdaControl, the interactive mode is more appropriate. See Section 3.5.7
[Interactive mode], page 19.

Chapter 3: Program Usage 19

Ex:

adactl -f my_rules.aru proc.adb

A rule �le must contain at least one rule. The layout of rules is free (i.e. a rule can extend
over several lines, and spaces are allowed between syntactic elements). A rule �le may also
contain comment lines. Comments begin with a \#" or a \--", and extend to the end of the
line. Comments can be placed anywhere in the �le.

Ex:

My rules file

generated by myself 2004.09.27.14.12.36

search rule1 (param1, param2, param3); -- This is Rule 1

My_Label: check rule2 (param1);

search rule3 (param1,

-- Comment in the middle

param2,

param3, param4);

search rule4; -- A rule without parameters

Note that the \-l" and \-f" options are not exclusive: if both are speci�ed, the rules to be
checked include those in the �le and those given on the command line.

3.5.5 Output �le

By default, the standard output is used for output. The default output can be changed by
specifying an output �le with the \-o" option.

Ex:

adactl -f my_rules.aru -o my_output.txt proc.adb

Error and found rule messages are output to the output �le. Syntax error messages for rules
and possible internal errors from AdaControl itself are output to the standard error �le.

If the output �le exists, new messages are appended to it. This allows running AdaControl
under several directories that make up the project, and gathering the results in a single �le.
However, if the \-w" option is given, AdaControl overwrites the output �le if it exists.

Ex:

adactl -w -f my_rules.aru -o my_output.txt proc.adb

3.5.6 Output format

The \-F" option selects the output format. It must be followed by \Gnat", \Gnat Short",
\CSV", or \CSV Short" (case insensitive). By default, the output is in \Gnat" format. See
Section 3.3.1 [Rule types and report messages], page 9 for details.

The \-S" option selects which statistics are output. It must be followed by a value in the
range 0..3. See Section 3.3.1 [Rule types and report messages], page 9 for details on the various
statistics levels.

adactl -F CSV -S 2 -f my_rules.aru -o my_output.csv proc.adb

3.5.7 Interactive mode

The \-I" option tells AdaControl to operate interactively. In this mode, commands and rules
speci�ed with \-l" or \-f" options are �rst processed, then AdaControl prompts for commands
on the terminal. Note that the \quit" command (see Section 3.4.2 [Quit command], page 14) is
used to terminate AdaControl.

The syntax for rules and commands is exactly the same as the one used for �les; especially,
each rule or command must be terminated with a \;". Note that the prompt (\Command:")

Chapter 3: Program Usage 20

becomes \.......:" when AdaControl requires more input because a command is not completely
given, and especially if you forget the �nal \;".

As with �les, it is possible to give several commands on a single line in interactive mode. Note
that if a command contains syntax errors, all \go" commands on the same line are temporarily
disabled. Other commands that do not have errors are normally processed however.

The interactive mode is useful when you want to do some analysis of your code, but don't
know beforehand what you want to check. Since the ASIS context is open only once when the
program is loaded, queries will be much faster than running AdaControl entirely with a new
query given in a \-l" option each time. It is also useful to experiment with AdaControl, and to
check interactively commands before putting them into a �le.

3.5.8 Local deactivation ignoring

The \-i" option tells AdaControl to ignore deactivation tags in Ada source code (see Section 3.7
[Disabling rules], page 22).

Ex:

adactl -i -f my_rules.aru proc.adb

3.5.9 Verbose and debug mode

In the default mode, AdaControl displays only rule messages. It is possible to get more infor-
mation with the verbose option (\-v"). In this mode, AdaControl displays unit names as they
are processed, and prints the number of errors, the number of warnings, and its global execution
time when it �nishes.

Ex:

adactl -v -f my_rules.aru proc.adb

It is also possible to get more information in case of a program error by using the debug
mode. Debug mode is enabled by using the \-d" option.

Note that in this mode, AdaControl may, in rare occasions (and only with some versions
of Gnat), display ASIS \bug boxes"; this does not mean that something went wrong with the
program, but simply that an ASIS failure was properly handled by AdaControl.

Ex:

adactl -d -f my_rules.aru proc.adb

In addition, output of the messages printed by the \-d" option can be directed to a �le
(instead of being printed on the standard error �le). This is done by the \-t" option, which
must be followed by the �le name.If the trace �le exists, new messages are appended to it.

3.5.10 Treatment of warnings

The \-e" option tells AdaControl to treat warnings as errors, i.e. to report a return code of 1
even if only \search" rules were triggered. See Section 3.6 [Return codes], page 21. It does not
change the messages however.

Conversely, the \-E" option tells AdaControl to not report warnings at all, i.e. only errors
are reported. However, if you ask for statistics, the number of warning messages is still counted.
See Section 3.3.1 [Rule types and report messages], page 9.

3.5.11 Exit on error

If an internal error is encountered during the processing of a unit, AdaControl will continue to
process other units. However, if the \-x" option is given, AdaControl will stop on the �rst error
encountered. This option is mainly useful if you want to debug AdaControl itself (or your own
rules). See Section 3.10 [In case of trouble], page 25.

Ex:

Chapter 3: Program Usage 21

adactl -x -f my_rules.aru proc.adb

3.5.12 Project �les

3.5.12.1 Emacs style project �les

An emacs project �le (the �le with a \.adp" extension used by the Ada mode of Emacs) can
be speci�ed with the \ -p" option. AdaControl will automatically consider all the directories
mentioned in \src dir" lines from the project �le.

Ex:

adactl -f my_rules.aru -p proj.adp proc.adb

3.5.12.2 GPS project �les

When run from GPS, AdaControl will automatically use the source directories from the current
(root) project. However, if you run it from the command line, it will not accept \.gpr" project
�les, because ASIS does not currently accept the \-P" option like other Gnat commands do.
Should this change in the future, a \-P" option could be passed as described for the \-I" option.
See Section 3.5.13 [ASIS options], page 21.

In the mean time, you can generate a \.adp" project �le from a \.gpr" project �le from within
GPS, by using the \Tools/AdaControl/Generate .adp project" menu. See Section 3.2 [Running
AdaControl from GPS], page 6. Alternatively, it is also possible to use GPS project �les by
generating the tree �les manually. see Section 3.9.2 [Generating tree �les manually], page 24 for
details.

3.5.13 ASIS options

Everything that appears on the command line after \--" will be treated as an ASIS option, as
described in the ASIS user manual.

Casual users don't need to care about ASIS options, except in one case: if you are running
AdaControl from the command line (not from GPS), and if the units that you are processing
reference other units whose source is not in the same directory, AdaControl needs to know how
to access these units (as GNAT would). This can be done either by using an Emacs project �le
(the \-p" option), by passing a \-I" option to ASIS, or by putting the appropriate directories
into the ADA INCLUDE PATH environment variable.

It is possible to include one or several \-I" options to reference other directories where sources
can be found. The syntax is the same as the \-I" option for GNAT.

Other ASIS options, like the \-Cx" and/or \-Fx" options, can be speci�ed. Most users can
ignore this feature; however, specifying these options can improve the processing time of big
projects. See Section 3.9 [Optimizing AdaControl], page 23.

3.6 Return codes

In order to ease the automation of rules checking with shell scripts, AdaControl returns various
error codes depending on how successful it was. Values returned are:

� 0: At most \search" rules were triggered (no rule at all with \-e" option)

� 1: At least one \check" rule was triggered (or at least one \search" or \check" rule with
\-e" option)

� 2: AdaControl was not run due to a syntax error in the rules or in the speci�cation of units.

� 10: There was an internal failure of AdaControl.

Chapter 3: Program Usage 22

3.7 Disabling rules

It is possible to disable rules on parts of the source code by placing a tag (special Ada comment)
in the source code. This can be done in two ways: block disabling or line disabling. The disabling
tag is \--##". Both ways take a list of rules to disable as parameters. A list of rules is a list of
rule names or rule labels, separated by spaces. Alternatively, the list of rules can be the word
\all" to disable all rules.

In a \{##" line, everything appearing after a second occurrence of \##" is ignored. This
allows the insertion of a comment explaining why the rule is disabled at that point.

3.7.1 Block disabling

A rule is disabled from the \rule o�" tag until the \rule on" tag. If there is no \rule on" tag,
the rule is disabled up to the end of �le.

Syntax:

--## rule off <rule_list>

Ada code block

--## rule on <rule_list>

Ex:

--## rule off rule1 rule2

I := I + 1;

Proc (I);

--## rule on rule2

3.7.2 Line disabling

The rule is disabled only for the line where the tag appears.

Syntax:

Ada code line --## rule line off <rule_list>

Ex:

I := I + 1; --## rule line off rule3 rule_label_1

Conversely, it is possible to re-enable a rule for just the current line in a block where rules
are disabled:

Syntax:

Ada code line --## rule line on <rule_list>

Ex:

I := I + 1; --## rule line on rule3

3.8 Helpful utilities

This section describe utilities that are handy to use in conjunction with AdaControl.

3.8.1 pfni

The convention used to refer to entities (as described in Section 3.3.3 [Specifying an Ada entity
name], page 11) is very powerful, but it may be di�cult to spell out correctly the name of some
entities, especially when using the overloaded syntax.

pfni (which stands for Print Full Name Image) can be used to get the correct spelling for
any Ada entity. The syntax of pfni is:

pfni [-sofd] [-p <project-file>] <unit>[:<line_number>[:<column_number>]]

[-- <ASIS options>]

or

Chapter 3: Program Usage 23

pfni -h

If called with the \-h" option, pfni prints a help message and exits.

Otherwise, pfni prints the full name image of all identi�ers declared in the given unit, unless
there is a \-f" (full) option, in which case it prints the full name image of all identi�ers (i.e.
including those that are used, but not declared, in the unit). If a <line number> is given, only
identi�ers on that line are printed. If both <line number> and <column number> are given, only
the identi�er (if any) at the given line and column is printed. The image is printed without
overloading information, unless the \-o" option is given.

If the \-s" option is given, the speci�cation of the unit is processed, otherwise the body is
processed. The \-p" option speci�es the name of an Emacs project �le, and the \-d" option is
the debug mode, as for AdaControl itself. ASIS options can be passed like for AdaControl.

As a side usage of pfni, if you are calling a subprogram that has several overloadings and
you are not sure which one is called, use pfni with the \-o" option on that line: the program
will tell you the full name and pro�le of the called subprogram.

3.8.2 Adactl -D

When run with the \-D" option, AdaControl simply outputs the list of units that would be
processed.

This list can be directed to a �le with the \-o" option (if the �le exists, it won't be overwritten
unless the \-w" option is speci�ed). This �le can then be used in an indirect list of units. See
Section 3.5.3 [Input units], page 17. Note that if you use the recursive (\-r") option, it is more
e�cient to create the list of units once and then use the indirect �le than to specify all applicable
units each time AdaControl is run.

3.8.3 makepat.sed

This �le (provided in the \src" directory) is a sed script that transforms a text �le into a set of
correponding regular expressions. It is useful to generate model header �les. See Section 4.15
[Header Comments], page 40.

3.8.4 unrepr.sed

This �le (provided in the \src" directory) is a sed script that comments out all representation
clauses. It is typically useful if you use a di�erent compiler that accepts representation clauses
not supported by GNAT.

Typically, you would copy all your sources in a di�erent directory, copy \unrepr.sed" in that
directory, then run:

sed -i -f unrepr.sed *.ads *.adb

You can now run AdaControl on the patched �les. Of course, you won't be able to check
rules related to representation clauses any more...

Note that the script adds \--UNREPR " to all representation clauses. Its e�ect can thus
easily be undone with the following commad:

sed -i -e "s/--UNREPR //" *.ads *.adb

3.9 Optimizing AdaControl

There are many factors that may in
uence dramatically the speed of AdaControl when processing
many units. For example, on our canonical test (same rules, same units), the extreme points
for execution time were 111s. vs 13s.! Unfortunately, this seems to depend on a number of
parameters that are beyond AdaControl's control, like the relative speed of the CPU to the
speed of the hard-disk, or the caching strategy of the �le system.

Chapter 3: Program Usage 24

This section will give some hints that may help you increase the speed of AdaControl, but
it will not change the output of the program; you don't really need to read it if you just use
AdaControl occasionnally. This section is concerned only with the GNAT implementation of
ASIS; other implementations work di�erently.

Bear in mind that the best strategy depends heavily on how your program is organized, and
on the particular OS and hardware you are using. Therefore, no general rule can be given, you'll
have to experiment yourself. Hint: if you specify the \-v" option to AdaControl, it will print in
the end the elapsed time for running the tests; this is very helpful to make timing comparisons.

Note: all options described in this section are ASIS options, i.e. they must appear last on
the command line, after a \--".

3.9.1 Tree �les and the ASIS context

Since AdaControl is an ASIS application, it is useful to explain here how ASIS works. ASIS
(and therefore AdaControl) works on a set of units constituting a \context". Any reference to
an Ada entity which is not in the context (nor automatically added, see below) will be ignored;
especially, if you specify to AdaControl the name of a unit which is not included in the current
context, the unit will simply not be processed.

ASIS works by exploring tree �les (same name as the corresponding Ada unit, with a \.adt"
extension), which are \predigested" views of the corresponding Ada units. By default, the tree
�les are generated automatically when needed, and kept after each run, so that subsequent runs
do not have to recreate them.

A context in ASIS-for-Gnat is a set of tree �les. Which trees are part of the context is de�ned
by the \-C" option:

� -C1 Only one tree makes up the context. The name of the tree �le must follow the option.

� -CN Several explicit trees make up the context. The name of the tree �les must follow the
option.

� -CA All available trees make up the context. These are the tree �les found in the current
directory, and in any directory given with a \-T" option (which works like the \-I" option,
but for tree �les instead of source �les).

The \-F" option speci�es what to do if the program tries to access an Ada unit which is not
part of the context:

� -FT Only consider tree �les, do not attempt to compile units on-the-
y

� -FS Always compile units on-the-
y, ignore existing tree �les

� -FM Compile on-the-
y units for which there is no already existing tree �le

Note that \-FT" is the only allowed mode, and must be speci�ed, with the \-C1" and \-CN"
options.

The default combination used by AdaControl is \-CA -FM".

3.9.2 Generating tree �les manually

It is also possible to generate the tree �les manually before running AdaControl. Although
this mode of operation is less practical, it is recommended by AdaCore for any ASIS tool that
deals with many compilation units. Some reasons why you might want to generate the tree �les
manually are:

� Your project uses GNAT project �les;

� Your project has several source directories (ASIS had problems with
ADA INCLUDE PATH, until releases dated later than Sept. 1st, 2006). Note
that an alternative solution is to specify source directories with the -I option;

� It is faster to generate tree �les once than to use \compile on the
y" mode.

Chapter 3: Program Usage 25

To generate tree �les manually, simply recompile your project with the \-gnatct" option.
This option can be passed to gnatmake normally. Of course, you will need all other options
needed by your project (like the \-P" option if you are using GNAT project �les).

Tree �les may be copied into a di�erent directory if you don't want your current directory
to be cluttered by them. In this case, use the \-T" ASIS option to indicate the directory where
the tree �les are located.

If you chose to generate the tree �les manually, you may want to specify the \-FT" ASIS
option (see above) to prevent from accidental automatic recompilation.

3.9.3 Choosing an appropriate combination of options

In order to optimize the use of AdaControl, it is important to remember that reading tree
�les is a time-consuming operation. On the other hand, a single tree �le contains not only
information for the corresponding unit, but also for all units that the given unit depends on.
Moreover, our measures showed that reading an existing tree �le may be slower than compiling
the corresponding unit on-the-
y (but once again, YMMV).

Note also that the \-r" option (recursive mode) of AdaControl implies an extra pass over the
whole program tree to determine the necessary units.

Here are some hints to help you �nd the most e�cient combination of options.

� If you want to run AdaControl on all units of your program, use the \-D" option to create
a �le containing the list of all required units, then use this �le as an indirect �le.

� Avoid having unnecessary tree �les. All tree �les in the context are read by ASIS, even if
they are not later used. If you don't want to run AdaControl on the whole project, deleting
tree �les from a previous run can save a lot of time.

� When using an indirect �le, the order in which units are given may in
uence the speed of
the program. As a rule of thumb, units that are closely related should appear close to each
other in the �le. A good starting point is to sort the �le in alphabetical order: this way,
child units will appear immediately after their parent. You can then reorder units, and
measure if it has a signi�cant e�ect on speed.

� If you want to check a unit individually, try using the \-C1" option (especially if the current
directory contains many tree �les from previous runs). Remember that you must specify
the unit to check to AdaControl, and the tree �le to ASIS. I.e., if you want to check the
unit \Example", the command line should look like:

adactl -f rules_file.aru example -- -FT -C1 example.adt

provided the tree �le already exists.

� For each strategy, �rst run AdaControl with the default options (which will create all
necessary tree �les). Compare execution time with the one you get with \-FT" and \-FS".
This will tell you if compiling on-the-
y is more e�cient than loading tree �les, or not.

3.10 In case of trouble

Like any sophisticated piece of software, AdaControl may fail when encountering some special
case of construct. ASIS may also fail occasionnally; actually, we discovered several ASIS bugs
during the development of AdaControl. These were reported to ACT, and have been corrected
in the wavefront version of GNAT - but you may be using an earlier version. In this case, try
to upgrade to a newer version of ASIS. If an AdaControl or ASIS problem is not yet solved,
AdaControl is designed in such a way that an occasionnal bug won't prevent you from using it.

If AdaControl detects an unexpected exception during the processing of a unit (an ASIS error
or an internal error), it will abandon the unit, clean up everything, and go on processing the
remaining units. This way, an error due to a special case in a unit will not a�ect the processing
of other units. AdaControl will return a Status of 10 in this case.

Chapter 3: Program Usage 26

However, if it is run with the \-x" option (eXit on error), it will stop immediately, and no
further processing will happen.

If you don't want the garbage from a failing rule to pollute your report, you may chose to
disable the rule for the unit that has a problem. See Section 3.4.8 [Inhibit command], page 16.

If you encounter a problem while using AdaControl, you are very welcome to report it to
rosen@adalog.fr. Please include the exact rule and the unit that caused the problem, as well as
the captured output of the program (with \-d" option).

mailto::rosen@adalog.fr

Chapter 4: Rules Usage 27

4 Rules Usage

This chapter describes each rule currently provided by AdaControl. Note that the rules direc-
tory of the distribution contains a �le named verif.aru that contains an example of a set of
rules appropriate to check on almost any software.

A general limitation applies to all rules. AdaControl is a static checking tool, and therefore
cannot check usages that depend on run-time values. For example, it is not possible to check
rules applying to an entity when this entity is aliased and accessed through an access value, or
rules applying to subprogram calls when the call is a dispatching call.

4.1 Abnormal Function Return

4.1.1 Syntax

<check|search|count> abnormal_function_return;

4.1.2 Action

This rule controls that the sequence of statements of each function body, as well as each exception
handler, ends either with a return statement or a raise statement (or equivalently, a call to
Ada.Exceptions.Raise_Exception or Ada.Exceptions.Reraise_Occurrence). Note that this
last statement can be embedded in blocks (i.e., it can be followed by any number of end for
block statements, but nothing else).

This is a su�cient (but of course not necessary) condition to ensure that no function raises
Program_Error due to reaching the end of its statements without encountering a return.

This rule can be speci�ed only once.

Ex:

check abnormal_function_return

4.1.3 tip

This rule checks that a function always returns correctly, but does not prevent multiple return
statements in functions. If you want to ensure that there is exactly one return statement in
functions, and that this statement is always the last one, use this rule together with the rule
statements(function_return). See Section 4.43 [Statements], page 58.

4.2 Allocators

4.2.1 Syntax

<check|search|count> allocators

[(task|protected|<type name> {, task|protected|<type name>})];

4.2.2 Action

This rule controls usage of allocators. If type names are given, only allocators whose allocated
type is mentioned are controlled; if \task" or \protected" is given, allocators for task types or
protected types (respectively) are controlled; otherwise all allocators are controlled. This rule is
especially useful for �nding memory leaks, since it tells all the places where dynamic allocation
occurs.

Ex:

search allocators (standard.string);

check allocators (T'Class);

Chapter 4: Rules Usage 28

4.2.3 Tips

The type given in the rule is the �rst named subtype, and the rule will also �nd allocators that
use a subtype of this type; especially, if the allocated type is T'Base, it will be found as T.

The type mentionned in the rule is the one following the new keyword, which is not necessarily
the same as the expected type in presence of implicit conversions like this:

type T is tagged ...;

type Class_Access is access T'Class;

X : Class_Access;

begin

X := new T;

This allocator will be found for type T, not for type T'Class.

4.3 Array Declarations

4.3.1 Syntax

<check|search|count> Array_Declarations (First, <value>);

<check|search|count> Array_Declarations (Max_Length, <maximum_length>);

4.3.2 Action

This rule controls various properties of array types and array objects declarations, depending
on the keyword given as the �rst parameter:

� \First" controls the lower bound of each dimension of arrays (even unconstrained array
types) whose value is not the given value. If this subrule is given both for \search" and for
\check", the value for \search" is interpreted as the prefered one, and the value for \check"
is interpreted as an alternative acceptable one; i.e., it is a warning if the value is the one
given for \check", and an error if it is neither. In short:

search array_declarations (first, 1);

check array_declarations (first, 0);

will issue a warning if the lower bound of an array is 0, and an error if it is neither 0 or 1.

� \Max Length" controls arrays that have a dimension whose number of elements is greater
than the given value, except for unconstrained array types.

This rule can be speci�ed at most once for each subrule and for each of \check", \search"
and \count". It is thus possible for each subrule to have a value considered a warning, and a
value considered an error.

Ex:

check array_declarations (first, 1);

check array_declarations (max_length, 100);

4.4 Barrier Expressions

4.4.1 Syntax

<check|search|count> Barrier_Expressions ([<allowable> {, <allowable>}]);

<allowable> ::= <entity> | <keyword>

<keyword> ::= allocation | any_component | any_variable |

arithmetic_operator | array_aggregate | comparison_operator |

conversion | dereference | indexing |

function_attribute | local_function | logical_operator |

record_aggregate | value_attribute

Chapter 4: Rules Usage 29

4.4.2 Action

This rule controls expressions used in barriers of protected entries. Without parameters, the
only elements allowed in barriers are references to boolean components of the protected element
and litterals (this corresponds to what is allowed for the Ravenscar pro�le). Parameters specify
other constructs that are allowed:

� Any entity (like a global variable, a function...) can be speci�ed and is thus allowed.

� \allocation" allows use of allocators.

� \any component" allows use of protected components that are not of type
Standard.Boolean.

� \any variable" allows use of any variable (i.e. variables external to the protected element).

� \arithmetic operator" allows use of prede�ned arithmetic operators ("+", "**", etc.).

� \array aggregate" allows use of array aggregates.

� \comparison operator" allows use of prede�ned comparison and membship operators ("=",
">", in, etc.).

� \conversion" allows use of type conversions and type quali�cations.

� \dereference" allows use of dereferencing of access types (both implicit and explicit deref-
erences).

� \indexing" allows use of array indexing and slices.

� \function attribute" allows use of attributes that are functions (like 'Pred, 'Image, etc.).

� \local function" allows use of (protected) functions declared in the same protected object.

� \logical operator" allows use of prede�ned logical operators and short-circuit forms (and,
or else, etc.).

� \record aggregate" allows use of record aggregates and extension aggregates.

� \value attribute" allows use of attributes that are simple values (like 'First, 'Terminated,
etc.).

This rule can be given only once for each of \check", \search" and \count".

Ex:

search barrier_expressions;

check barrier_expressions (logical_operator, comparison_operator,

any_component,

Pack.Global_State);

4.4.3 Tips

The goal of the \Simple Barrier" restriction from the Ravenscar pro�le is to ensure that evalu-
ation of barriers never raise exceptions. Even simple things like a quali�ed expression can raise
exceptions, but in practice more than the restriction of the Ravenscar pro�le can be \reasonably"
allowed.

Note that the various \operator" keywords allow only the use of prede�ned operators. If a
user de�ned operator should be allowed, provide it explicitely as an <entity>. There is no way
to allow any function call, since this would boil down to allowing pretty much anything, but you
can of course specify explicitely functions that can be called.

You can provide this rule both for \check" and \search", but of course it makes sense only if
the set of allowed features for \search" is a subset of those allowed for \check". This way, the
use of certain features can be interpreted only as a warning.

Chapter 4: Rules Usage 30

4.5 Case Statement

4.5.1 Syntax

<check|search|count> Case_Statement (max_range_span, <maximum_span>);

<check|search|count> Case_Statement (max_values, <maximum_span>);

<check|search|count> Case_Statement (min_others_span, <minimum_span>);

<check|search|count> Case_Statement (min_paths, <minimum_span>);

4.5.2 Action

This rule controls various sizings in case statement, depending on the keyword given as the �rst
parameter:

� \max range span" controls that ranges used as choices in case statements cover at most
the speci�ed number of values. Especially, a value of 0 disallows all ranges as choices.

� \max values" controls case statements where the subtype of the case selector covers more
values than the speci�ed number of values.

� \min others span" controls when others case alternatives that cover less than the speci�ed
number of values. The <minimum span> must be at least 1 (i.e., if 1 is speci�ed, the rule
will signal \when others" that cover no value at all).

� \min paths" controls case statements with less paths (i.e. when branches) than the speci�ed
number of values.

This rule can be speci�ed at most once for each subrule and for each of \check", \search"
and \count". It is thus possible for each subrule to have a value considered a warning, and a
value considered an error.

Ex:

check Case_Statement (min_others_range, 1);

search Case_Statement (min_others_range, 5);

check Case_Statement (max_values, 10);

check Case_Statement (min_paths, 5);

4.5.3 Limitations

If some characteristic of the case statement depend on a generic formal type, it is not possible
to control some of the features statically. Such cases are detected by the rule \uncheckable".
See Section 4.46 [Uncheckable], page 63.

4.6 Control Characters

4.6.1 Syntax

<check|search|count> control_characters;

4.6.2 Action

This rule controls the occurrence in the source �le of the control characters that are allowed by
the language (ASCII HT, ASCII VT and ASCII FF). Since it has no parameters, this rule can
be given only once.

Ex:

check control_characters;

Chapter 4: Rules Usage 31

4.7 Declarations

4.7.1 Syntax

<check|search|count> declarations (<declaration_kw> {, <declaration_kw>});

declaration_kw ::=

access_protected_type | access_subprogram_type |

access_task_type | access_type |

aliased | array |

array_type | child_unit |

constant | constrained_array_type |

decimal_fixed_type | defaulted_discriminant |

defaulted_generic_parameter | defaulted_parameter |

derived_type | discriminant |

enumeration_type | entry |

exception | extension |

fixed_type | float_type |

formal_function | formal_package |

formal_procedure | generic |

handlers | in_out_generic_parameter |

in_out_parameter | integer_type |

initialized_protected_field | initialized_record_field |

limited_private_type | modular_type |

multiple_names | named_number |

nested_function_instantiation | nested_generic_function |

nested_generic_package | nested_generic_procedure |

nested_package | nested_package_instantiation |

nested_procedure_instantiation | non_limited_private_type |

non_identical_renaming | not_operator_renaming |

null_extension | null_ordinary_record_type |

null_tagged_type | operator |

operator_renaming | ordinary_fixed_type |

ordinary_record_type | out_parameter |

package_statements | private_extension |

protected | protected_entry |

protected_type | record_type |

renaming | separate |

signed_type | single_array |

single_protected | single_task |

subtype | tagged_type |

task | task_entry |

task_type | type |

unconstrained_array_type | uninitialized_protected_field |

uninitialized_record_field

4.7.2 action

This rule controls usage of certain Ada declarations. The rule can be speci�ed at most once for
each declaration keyword.

� Declaration keywords that are Ada keywords match the corresponding Ada declarations.

� access_type controls all access type declarations, while access_subprogram_type,

Chapter 4: Rules Usage 32

access_protected_type, and access_task_type control only access to procedures or
functions, access to protected types, or access to task types, respectively.

� array controls all array de�nitions (array types and single arrays), while array_type con-
trols only array types and single_array controls only single arrays (objects of an anony-
mous array type. constrained_array_type controls only constrained array types, while
unconstrained_array_type controls only unconstrained array types.

� child_unit controls the declaration of all child units.

� defaulted_parameter controls subprogram or entry (in) parameters that provide a default
value, while defaulted_generic_parameter controls generic formal objects that provide a
default value.

� derived_type controls regular derived types, but not type extensions (derivations of tagged
types). These are controlled by extension and private_extension.

� discriminant controls all declarations of types with discriminants, while defaulted_

discriminants controls only those where defaults are provided for the discriminants.

� exception controls exception declarations.

� fixed_type controls all declarations of �xed point types while ordinary_fixed_type con-
trols only ordinary (binary) �xed point types, and decimal_fixed_type controls only dec-
imal �xed point types.

� float_type controls declarations of
oating point types.

� formal_function, formal_package, and formal_procedure control generic formal func-
tions, packages, and procedures, respectively.

� handlers controls the presence of exception handlers in any handled sequence of statements.

� in_out_parameter and out_parameter control subprogram and entry parameters of
modes in out and out (respectively), while in_out_generic_parameter and out_generic_

parameter do the same for generic formal parameters

� integer_type controls all declarations of integer types, while signed_type controls only
signed integer types, and modular_type controls only modular types.

� initialized_record_field and initialized_protected_field control the declaration
of record (respectively protected) component that include a default initialization, while
uninitialized_record_field and uninitialized_protected_field control the decla-
ration of record (respectively protected) component that do not include a default initializa-
tion

� limited_private_type controls limited private type declarations, while non_limited_

private_type controls regular (non limited) private type declarations.

� multiple_names controls declarations where more than one de�ning identi�er is given in
the same declaration.

� named_number controls declarations of named numbers, i.e. untyped constants.

� nested_package controls package declarations that are not compilation units (i.e. nested
in some other unit).

� nested_generic_function, nested_generic_package, nested_generic_procedure con-
trol generic function (respectively package, procedure) declarations that are not compilation
units (i.e. nested in some other unit).

� nested_function_instantiation, nested_package_instantiation, nested_

procedure_instantiation control function (respectively package, procedure)
instantiations that are not compilation units (i.e. nested in some other unit).

� null_extension controls record extensions (derived tagged types) that contain no new
elements. Similarly, null_ordinary_record_type and null_tagged_type control ordinary

Chapter 4: Rules Usage 33

records and tagged types that contain no elements. Note that the record de�nitions may be
plain \null record" de�nitions, or full record de�nitions that contain only null components.
However, a de�nition is not considered null if it contains a variant part.

� operator controls the de�nition of operators (things like "+"); note that the message is
given on the speci�cation if there is an explicit speci�cation, on the body otherwise.

� package_statements controls the presence of elaboration statements in the bodies of pack-
ages (or generic packages).

� private_extension controls private extensions, i.e. derivations from a tagged type with a
with private extension part.

� record_type controls all record type declarations (tagged or not), while ordinary_record_
type controls only non-tagged record types, and tagged_type controls only tagged record
types.

� renaming controls all renaming declarations, while operator_renaming controls only those
that are renamings of an operator, not_operator_renaming controls only those that are
not renamings of an operator, and non_identical_renaming controls only those where the
new name and the old name are not the same.

� subtype control all explicit subtype declarations (i.e. not all anonymous subtypes that
appear at various places in the language).

� task controls task type declarations as well as single tasks declarations while single_task
and task_type control only single task declarations or task type declarations respectively
(and similarly for protected).

� type controls all type (but not subtype) declarations.

Ex:

search declarations (task, exception);

4.7.3 Tips

Certain keywords are not exclusive, and it may be the case that several keywords apply to the
same declaration; in this case, the most speci�c one is reported. For example, if you specify:

check declarations (record_type, tagged_type);

regular record types will be reported as \record type", while tagged types will be reported
as \tagged type" (but not both). However, if several keywords apply for di�erent rule types,
like:

check declarations (tagged_type);

search declarations (record_type);

then both are reported (for a tagged type declaration).

Some of the keyword do not seem very useful; it would be strange to have a programming
rule that prevents all type declarations... But bear in mind that AdaControl can be used not
only for checking, but also for searching; �nding all type declarations in a set of units can make
sense.

4.7.4 Limitation

It is currently not possible to specify di�erent rule types for the same declaration keyword;
especially, it is not possible to specify both search (or check) and count for the same declaration
keyword. However, it is possible to specify di�erent rule types for di�erent declaration keywords,
even if they overlap. For example, the following will report all task entries, and count all entries
(whether task entries or protected entries):

search declarations (task_entry);

count declarations (entry);

This limitation is expected to be removed in the next version of AdaControl.

Chapter 4: Rules Usage 34

4.8 Default Parameter

4.8.1 Syntax

<check|search|count> default_parameter

(<entity> | all, <formal name> | all, [not] used);

4.8.2 Action

This rule controls subprogram calls or generic instantiations that use (or conversely don't use)
the default value for the indicated parameter. If a subprogram is called, or a generic instantiated,
whose name matches <entity>, and it has a formal whose name is <formal name>, then:

� If the string used (case irrelevant) is given as the third parameter, the rule reports when
there is no corresponding actual parameter (i.e. the default value is used for the parameter).

� If the string not used (case irrelevant) is given as the third parameter, the rule reports
when there is an explicit corresponding actual parameter (i.e. the default is not used for
the parameter).

� If the string given as the third parameter is anything else, it is an error.

Alternatively, the <entity> and/or the <formal name> can be replaced by the keyword all,
in which case any entity (respectively formal) will match.

Ex:

check default_parameter (P, X, used);

check default_parameter (P, Y, not used);

search default_parameter (all, all, used);

4.8.3 Limitations

This rule does not (yet) consider the use of default formal procedures and functions in generic
instantiations.

4.9 Directly Accessed Globals

4.9.1 Syntax

<check|search|count> Directly_Accessed_Globals [(<kind_kw> {,<kind_kw>})];

kind_kw ::= plain | accept | protected

4.9.2 Action

This rule controls global variables declared directly in (generic) package bodies that are accessed
outside of dedicated callable entities (i.e. procedure or function, possibly protected, protected
entries, and accept statements).

This rule can be speci�ed only once. The parameters indicate which kinds of callable entity
are allowed: \plain" for non-protected subprograms, \protected" for protected subprograms,
and \accept" for accept statements). Without parameters, all forms are allowed.

More precisely, this rule ensures that the global variables are read from a single callable
entity, and written by a single callable entity. Note that the same callable entity can read and
write a variable, but in this case no other callable entity is allowed to read or write the variable.

� Subprograms used to read/write the variables must be declared at the same level as the
variable itself (i.e. not nested), and must not be generic.

� Protected subprograms used to read/write the variables must both be part of the same
single protected object, which must be declared at the same level as the variable itself (i.e.
not nested); they are not allowed to be declared in a protected type, since if there are several
protected objects of the same type, mutual exclusion would not be enforced.

Chapter 4: Rules Usage 35

� accept statements used to read/write the variables must both be part of the same single
task object, which must be declared at the same level as the variable itself (i.e. not nested);
they are not allowed to be declared in a task type, since if there are several task objects of
the same type, mutual exclusion would not be enforced.

In short, this rule enforces that all global variables are accessed by dedicated access subpro-
grams, and that only those subprograms access the variables directly. If given with the keyword
\protected" and/or \accept", it enforces that global variables are accessed only by dedicated
protected subprograms or tasks, ensuring that no race condition is possible.

Ex:

check directly_accessed_globals

4.9.3 Tips

Note that this rule controls global variables from package bodies, not those from the speci�cation.
This is intended, since it makes little sense to declare a variable in a speci�cation, and then
require it not to be accessed directly, but through provided subprograms. Obviously, in this
case the variable should be moved to the body.

Note that AdaControl can check that no variable is declared in a package speci�cation with
the following rule:

check usage (variable, from_spec);

see Section 4.50 [Usage], page 67 for details.

4.9.4 Limitations

AdaControl cannot check entities accessed through dynamic names (dynamic renaming, access
on aliased variables). Use of such constructs is detected by the rule \uncheckable". See Sec-
tion 4.46 [Uncheckable], page 63.

4.10 Entities

4.10.1 Syntax

<check|search|count> entities (<name> {, <name>});

4.10.2 Action

This rule controls all uses of the indicated entities. It is not intended to replace cross-references,
but can be quite handy to check, for example, that a program does not contain any more calls
to debugging procedures before �elding it.

Note that this rules reports on the use of the entity, not the name: if an entity has been
renamed, it will be found under its various names. Similarly, if the given entity is a generic or
part of a generic, all corresponding uses in instances will be reported.

Ex:

search entities (Debug.Trace);

check entities (Ada.Text_IO.Float_IO.Put);

The second line will report on any use of a Put from any instantiation of Float_IO.

4.10.3 Tips

This rule can also be used to check for all occurrences of certain attributes with the \all
<Attribute>" syntax. For example, the following will report on any usage of 'Unchecked_
Access:

Chapter 4: Rules Usage 36

check entities (all 'Unchecked_Access);

In certain contexts, only a limited set of the Ada prede�ned units is allowed. For example,
it can be useful to forbid entities from Standard, System, or entities de�ned in special needs
annexes. The rules directory of Adacontrol contains �les with Entity rules that forbid the use
of various prede�ned Ada units. Comment out the lines for the units that you want to allow.
You can then simply \source" these �les from your own rule �le (or copy the content) if you
want to disallow these units. See Section 5.1 [Rules �les provided with AdaControl], page 71.

4.10.4 Limitation

Gnat de�nes Unchecked_Conversion and Unchecked_Deallocation as separate entities, rather
than renamings of Ada.Unchecked_Conversion and Ada.Unchecked_Deallocation. As a con-
sequence, it is necessary to specify explicitely both forms if you want to make sure that the
corresponding generics are not used.

4.11 Entity Inside Exception

4.11.1 Syntax

<check|search|count> entity_inside_exception (<spec> {, <spec>});

<spec> ::= [not] <entity> | calls

4.11.2 Action

This rule controls exception handlers that contain references to one or several Ada entities
speci�ed as parameters. If the keyword \calls" is given, it stands for all subprogram and entry
calls. If an <entity> (or \calls") is preceded by the keyword \not", it is not included in the
list of controlled entities (i.e. the entity is allowed in the exception handler). This allows to
make exceptions to a more general speci�cation of an entity, or to allow calls to well-de�ned
procedures if the keyword \calls" is given.

Ex:

check entity_inside_exception (ada.text_io.put_line);

-- Control all calls, except to the Report_Exception procedure:

check entity_inside_exception (calls, not Reports.Report_Exception);

-- Control all Put, except the one on Strings:

check entity_inside_exception (all Put,

not Ada.Text_IO.Put{Standard.String});

4.12 Exception Propagation

4.12.1 Syntax

<check|search|count> exception_propagation

([<level>,] interface, <convention> {, <convention> });

<check|search|count> exception_propagation

([<level>,] parameter, <parameter name> {, <parameter name>});

<check|search|count> exception_propagation

([<level>,] task);

<check|search|count> exception_propagation

(<level>, declaration);

Chapter 4: Rules Usage 37

4.12.2 Action

This rule controls subprograms, tasks, or all declarations that can propagate exceptions, while
being used in contexts where it is desirable to ensure that no exception can be propagated.

A subprogram or task is considered as not propagating if:

1. it has an exception handlers with a \when others" choice

2. no exception handler contains a raise statement, nor any call to Ada.Exception.Raise_

Exception or Ada.Exception.Reraise_Occurrence.

A declaration is considered propagating if it includes elements that could propagate excep-
tions. The strength of the check depends on the given <level>. The possible values and their
e�ect are:

� 0: expressions in declarative parts are not considered (anything allowed, default behaviour
for \interface", \parameter" and \task". Not allowed for \declaration").

� 1: no function calls (including operators) are allowed in expressions.

� 2: same as 1, plus no use of variables in expressions allowed.

� 3: same as 2, plus no declaration of objects (constants or variables) allowed (not very useful
for \declaration").

It is dangerous to call an Ada subprogram that can propagate exceptions from a language that
has no exception (and especially C). Therefore any such subprogram should have a \catch-all"
exception handler. In its �rst form, the rule analyzes all subprograms to which an Interface or
Export pragma applies (with the given convention(s)), and reports on those that can propagate
exceptions.

Moreover, many systems (typically windowing systems) use call-back subprograms. Although
the native interface is generally hidden behind an Ada binding, the call-back subprograms will
eventually be called from another language. In its second form, the rule is given one or more
fully quali�ed formal parameter names (i.e. in the form of the parameter name pre�xed by the
full name of its subprogram, see Section 3.3.3 [Specifying an Ada entity name], page 11). The
rule will report on any subprogram that can propagate exceptions and is used as the pre�x of a
'Access or 'Address attribute that appears as part of an actual value for the indicated formal.
Similarly, the indicated formal can also be the name of a formal procedure or function of a
generic. In this case, the rule will report on any subprogram that can propagate exceptions and
is used as an actual in an instantiation for the given formal.

Since tasks die silently if an exception is propagated out of their body, it is generally desirable
to ensure that every task has an exception handler that (at least) reports that the task is being
completed due to an exception. In its third form, the rule will report on any task that can
propagate exceptions.

For these three forms, ensuring that a handler is present protects against exceptions raised
in the sequence of statements, but not against exceptions raised by declarations. In addition,
the (optional) <level> parameter can be used to control the use of certain constructs in the
declarative part of subprograms or tasks, in order to minimize the possibility of exceptions being
raised.

Finally, it is sometimes desirable to make sure that no declaration raises an exception, ever.
In its fourth form, the rule will report on any declaration that can propagate exceptions, irre-
spectively of where it appears. In this case, the speci�cation of <level> is required and cannot
be 0.

Ex:

check exception_propagation (interface, C);

check exception_propagation (parameter, Pack.Register.CB);

check exception_propagation (task);

Chapter 4: Rules Usage 38

check exception_propagation (2, declaration);

The �rst line will report on any subprogram to which a pragma Interface (C,...) applies
that can propagate exceptions.

If Proc is a procedure that can propagate exceptions, the second line will report on every
call like:

Pack.Register (CB => Proc'Access);

The third line will report on any task that can terminate silently due to an unhandled
exception.

The fourth line will report on any declaration that makes use of function calls or variables.

4.12.3 Tips

Note that the registration procedure can be designated by an access type, but in this case, use
the name of the formal for the access type. For example, given:

package Pack is
type Acc_Proc is access procedure;
type Acc_Reg is access procedure (CB : Acc_Proc);

...

Ptr : Acc_Reg := ...;

You can give a rule such as:

check exception_propagation (parameter, Pack.Acc_Reg.CB);

All procedures registered by a call to Pack.Ptr.all will be considered.

4.12.4 Limitations

An exception may be raised in a subprogram considered as not propagating by this rule, if an
exception handler calls a subprogram that propagates an exception.

The rule will not consider subprograms that are not statically known (i.e. if a subprogram
is registered through a dereference of a pointer to subprogram), like in the following example:

Pack.Register (CB => Pointer.all'Access);

Due to a weakness of the ASIS standard, references to subprograms that appear in dispatching
calls are not considered. This limitation will be removed as soon as we �nd a way to work around
this problem, but the issue is quite di�cult!

These last two cases are detected by the rule \uncheckable". See Section 4.46 [Uncheckable],
page 63.

4.13 Expressions

4.13.1 Syntax

<check|search|count> expressions (<expression_kw> {, <expression_kw>});

expression_kw ::= and | and_then | array_others | or |

or_else | real_equality | record_others | slice |

xor

4.13.2 Action

This rule controls usage of certain forms of expressions. The rule can be speci�ed at most once
for each expression keyword.

Chapter 4: Rules Usage 39

� real_equality controls usage of exact equality or inequality (\=" or \/=") between real
(
oating point or �xed point) values.

� slice controls usage of array slices.

� and, or, xor, and_then, and or_else control usage of the corresponding logical operator
(or short circuit form).

� array_others and record_others control the occurrence of a when others => association
in array and record aggregates, respectively.

Ex:

search expressions (real_equality, slice);

4.14 Global References

4.14.1 Syntax

<check|search|count> global_references

(all|multiple|multiple_non_atomic,

task|protected|<Entity_name> {, task|protected|<Entity_name>});

4.14.2 Action

This rule controls access to global variables from several entities. The <Entity_name> must be
subprograms, task types, single task objects, protected types, or single protected objects. The
special keywords task and protected are used to refer to all tasks and to all protected entities,
respectively.

If the �rst parameter is all, all references to global elements from the indicated entities are
reported. If the �rst parameter is multiple, only global elements that are accessed by more
than one of the indicated entities (i.e. shared elements) are reported. Note however that if
a reference is found from a task type or protected type, it is always reported, since there are
potentially several objects of the same type. If the �rst parameter is multiple_non_atomic,
references reported are the same as with multiple, except that global variables that are atomic
or atomic_components and written from at most one of the indicated entities are not reported.
Note that this latter case corresponds to a safe reader/writer use of atomic variables.

This rule follows the call graph, and therefore �nds references from subprogram and protected
calls made (directly or indirectly) from the indicated entities. However, calls to subprograms
from the Ada standard library are not followed.

Ex:

-- Find global variables used by P1 or P2:

search global_references (all, P1, P2);

-- Find possible race conditions:

check global_references (multiple, task, protected);

This rule can be given several times, and con
icts (with multiple) are reported on a per-rule
basis, i.e. given:

check global_references (multiple, P1, P2);

check global_references (multiple, P1, P3);

the �rst rule will report on global variables shared between P1 and P2, and the second rule
will report on global variables shared between P1 and P3.

Chapter 4: Rules Usage 40

4.14.3 Tips

The notion of \global" is relative, i.e. it designates every variable whose scope encloses (strictly)
the indicated entities. This means that a same reference may or may not be global, depending
on the indicated entity. Consider:

procedure Outer is
Inner_V : Integer;

procedure Inner_P is
begin

Inner_V := 1;

end Inner_P;

begin
Inner_P;

end Outer;

The rule

check global_references (all, outer);

will not report any global reference, while the rule

check global_references (all, outer.inner_p);

will report a reference to Inner_V. This is as it should be, since there is no race condition if
several tasks call Outer, while there is a risk if several tasks (declared inside Outer) call Inner_P.

4.15 Header Comments

4.15.1 Syntax

<check|search|count> header_comments (minimum, <comment lines>);

<check|search|count> header_comments (model, "<file name>");

4.15.2 Action

If the keyword \minimum" is given as �rst parameter, this rule controls that every compilation
unit starts with at least the number of comment lines indicated by the second parameter. If
several forms of headers are possible, checking that the headers follow the project's standard
requires manual inspection, but this rule is useful to control that unit headers have not been
inadvertantly forgotten.

If the keyword \model" is given as �rst parameter, the second parameter is interpreted as a
�le name (and must be given within quotes, since usually �le names contain special characters
like \." and \/"). If the �le name is not an absolute path, it is interpreted as relative to the
directory of the �le that contains the rule, or the to the current directory if the rule is given on
the command line. Each line of the indicated �le is a regular expression, and the rule controls
that the corresponding line of the source �le matches the expression. See Chapter 7 [Syntax of
regular expressions], page 78. However, if a line contains only a single *" character, it means
that the next line is a pattern that can be matched any number of times (including 0).

This rule can be given at most once with \minimum" for each of \check", \search", and
\count". The rule can be given only once with \model" (but it can be given together with one
or more \minimum" rules).

Ex:

check header_comments (minimum, 10);

search header_comments (model, "header.pat");

count header_comments (minimum, 20);

Chapter 4: Rules Usage 41

This makes an error for every unit that starts with less than 10 comment lines, and a warning
for units that do not follow the pattern contained in the �le header.pat. A count of units that
start with less than 20 comment lines is reported.

Example of a pattern �le:

^--$

^-- Author: .+$

^-- Date: \d{2}/\d{2}/\\d{4}$

4.15.3 Tips

Remember that the lines of the �le are regular expressions; every character that is specially
interpreted (like \+", *", etc.) must be quoted with \\" if it must appear textually. To ease
the process of generating the model �le, the directory source contains a script �le for sed named
makepat.sed; if you run this script on a �le that contains a standard header, it will produce a
pattern �le where each line starts with \^", ends with \$", and every special character is quoted
with \\".

4.16 If For Case

4.16.1 Syntax

<check|search|count> if_for_case;

4.16.2 Action

This rule controls usage of if statements that could be replaced by case statements. An if

statement is assumed to be replaceable if it has at least one elsif and all conditions are
comparisons (or membership tests, possibly connected by logical operators) of the same discrete
variable with static values. Typically, this rule will spot constructs like:

if X = 1 then
...

elsif X = 2 or X = 3 or X = 4 then
...

elsif X >= 5 and X <= 10 then
...

elsif X in 11 .. 20 then
...

else
...

end if;

Ex:

check if_for_case;

4.17 Instantiations

4.17.1 Syntax

<check|search|count> instantiations (<generic name> {, <entity name> | <>});

4.17.2 Action

This rule controls all instantiations of a generic, or only instantiations that are made with speci�c
values of the parameters.

An instantiation matches if either:

Chapter 4: Rules Usage 42

1. No entity name is given in the rule

2. The entity names given are the same as the �rst parameters of the instantiation (i.e. there
can be more actual parameters in the instantiation than speci�ed in the rule). A box <>

can be given instead of an entity name, in which case it will match any actual parameter.

If an actual is an expression (which is possible only for a formal in object), it cannot be
matched.

Ex:

search instantiations (ada.unchecked_deallocation);

check instantiations (ada.unchecked_conversion, standard.string);

check instantiations (ada.unchecked_conversion, <>, standard.string);

The �rst example searches for all instantiations of Ada.Unchecked_Deallocation; the second
one checks instantiations of Ada.Unchecked_Conversion where the �rst parameter is String (ig-
noring the second parameter), while the third example checks instantiations of Ada.Unchecked_
Conversion where the second parameter is String (ignoring the �rst parameter).

4.17.3 Tips

It is often useful to check that a generic is instantiated only once (at least for a given type) in
a project. For example, a project may have a special service in charge of releasing pointers to
strings; it may be useful to check that Unchecked_Deallocation is not instantiated for String
anywhere else.

Note that the report message for this rule counts how many matches are found; a �rst solution
is to search for instantiations of Unchecked_Deallocation and verify manually that the count
is 1.

Another solution is to disable the check for the rule at the place where it is allowed, and then
do a check; if there are other instantiations, they will come out as errors.

4.18 Insu�cient Parameters

4.18.1 Syntax

<check|search|count> insufficient_parameters

(<Max_Allowed> {, <Type_Name>});

4.18.2 Action

This rule controls calls to subprograms and entries where the values of parameters does not
provide su�cient information to the reader to correctly identify the parameter's purpose.
<Max Allowed> is the maximum number of allowed \insu�cient" parameters (can be 0).
<Type Name> designates enumeration types whose values should be included in the check.

An actual parameter is deemed "insu�cient" if it is given in positional (as opposed to named)
notation, it is an expression whose primaries are all numeric literals, or enumeration literals
belonging to one of the types passed as parameters to the rule (Standard.Boolean for example).

This rule can be given once for each of check, search, and count. This way, it is possible to
have a level considered a warning (search), and one considered an error (check).

Ex:

search Insufficient_Parameters (1, Standard.Boolean);

check Insufficient_Parameters (2, Standard.Boolean);

Chapter 4: Rules Usage 43

4.18.3 Tips

This rule does not apply to operators that use in�x notation, nor to calls to subprograms that
are attributes, since named notation is not allowed for these.

This rule controls the use of positional parameters according to their values; it is also possible
to control the use of positional parameters according to the number of parameters with the rule
style (positional_association). See Section 4.44 [Style], page 60.

Note also that this rules applies only to calls, while style (positional_association) ap-
plies to all forms of associations.

4.19 Local Hiding

4.19.1 Syntax

<check|search|count> local_hiding;

4.19.2 Action

This rule controls declarations that hide an outer declaration with the same name (and parameter
and result type pro�le, if both are overloadable constructs). Since this rule has no parameters,
it can be given only once (otherwise, it is an error).

Ex:

search local_hiding;

4.20 Local Instantiation

4.20.1 Syntax

<check|search|count> local_instantiation

[(<generic name> {, <generic name>})];

4.20.2 Action

This rule controls instantiations that are done in a local scope (i.e. not at library level in a
library package, or a subpackage of a library package). Instantiations that appear in a generic
package are not
agged (unless the generic package is itself in a local scope).

Without parameter, the rule controls all local instantiations, otherwise it controls only in-
stantiations of the indicated generics.

Ex:

check local_instantiation (ada.unchecked_deallocation);

search local_instantiation;

4.21 Max Blank Lines

4.21.1 Syntax

<check|search|count> max_blank_lines (<max allowed blank lines>);

4.21.2 Action

This rule controls the occurrence of more than the indicated number of consecutive blank lines
(empty lines, or lines that contain only spaces). This rule can be given once for each of check,
search, and count. This way, it is possible to have a number of blank lines considered a warning
(search), and one considered an error (check). Of course, this makes sense only if the number
for search is less than the one for check.

Ex:

Chapter 4: Rules Usage 44

search max_blank_lines (2);

check max_blank_lines (5);

4.22 Max Call Depth

4.22.1 Syntax

<check|search|count> Max_Call_Depth (<allowed depth> | finite);

4.22.2 Action

This rule controls the maximum depth of subprograms (or entry) calls; roughly, the call depth
is the number of frames that are stacked by a call: if you call a subprogram that calls another
subprogram that calls nothing, then the call depth is 2. Note that a call to a task (not protected)
entry has always a depth of 1, since the accept body that corresponds to the entry is executed
on a di�erent stack.

The value of the parameter is the maximum allowed depth, i.e. the rule will trigger if the call
depth is strictly greater than the indicated value. A call to a (directly or indirectly) recursive
procedure is considered of in�nite depth, and will be therefore signaled (with an appropriate
message) for any value of <allowed depth>. Alternatively, the keyword \�nite" can be given in
place of the <allowed depth>: in this case, only calls to recursive subprograms will be signalled.

This rule can be given once for each of check, search, and count. This way, it is possible to
have a call depth considered a warning (search), and one considered an error (check). Of course,
this makes sense only if the number for search is less than the one for check.

Ex:

search max_call_depth (9);

check max_call_depth (finite);

4.22.3 Tip

It is possible to give the value 0 for <allowed depth>. Of course, it would not make sense to
forbid all subprogram calls in an Ada program, but this can be useful for inspection purposes,
since every call will be reported, and the message indicates the depth of the call.

4.22.4 Limitations

Calls to attributes, prede�ned operators, etc. are assumed to have a depth of 1.

Calls through pointers to subprograms and dispatching calls are unknown statically; they
are assumed to have a depth of 1. Such calls are detected by the rule \uncheckable". See
Section 4.46 [Uncheckable], page 63.

4.23 Max Line Length

4.23.1 Syntax

<check|search|count> max_line_length (<max allowed length>);

4.23.2 Action

This rule controls the maximum length of source lines. This rule can be given once for each of
check, search, and count. This way, it is possible to have a length considered a warning (search),
and one considered an error (check). Of course, this makes sense only if the length for search is
less than the one for check.

Ex:

search max_line_length (80);

check max_line_length (120);

Chapter 4: Rules Usage 45

4.24 Max Nesting

4.24.1 Syntax

<check|search|count> max_nesting (<max allowed depth>);

4.24.2 Action

This rule controls the nesting of declarative constructs (like subprograms, packages, generics,
block statements. . .) that exceed a given depth. Nesting of statements (loop, case) is not
considered. This rule can be given once for each of check, search, and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check). Of
course, this makes sense only if the level for search is less than the one for check.

Ex:

search max_nesting (5);

check max_nesting (7);

4.25 Max Parameters

4.25.1 Syntax

<check|search|count> max_parameters (<max_allowed>, {,<entity_kw>});

entity_kw ::= function | procedure | protected_entry |

protected_function | protected_procedure |task_entry

4.25.2 Action

This rule controls declarations of callable entities that have more parameters than the speci�ed
allowed value. If one or more <entity kw> is speci�ed, the rule applies only to the corresponding
declaration(s), otherwise it applies to all callable entities.

This rule can be given once for each of check, search, and count for each kind of entity. This
way, it is possible to have a level considered a warning (search), and one considered an error
(check). Of course, this makes sense only if the level for search is less than the one for check.

Ex:

check max_parameters (10, procedure, function);

search max_parameters (5, procedure, function);

count max_parameters (5);

4.25.3 Tips

This rule applies to generic subprograms as well as to regular ones. On the other hand, it
does not apply to generic formal subprograms, since instantiations would only be possible with
subprograms which are supposed to have been already controlled.

Instantiations are also controlled; the number of parameters is taken from the corresponding
generic.

Note that this rule controls only \regular" parameters, not generic formal parameters.

4.26 Max Statement Nesting

4.26.1 Syntax

<check|search|count> Max_Statement_Nesting (<stmt_kw>, <max allowed depth>);

<stmt_kw> ::= block | case | if | loop | all

Chapter 4: Rules Usage 46

4.26.2 Action

This rule controls the nesting of compound statements. If one of \block", \case", \if", or \loop"
is speci�ed, it controls the nesting of statements of the same kind, i.e. an if within a loop within
an if counts only 2 for the \if" keyword. If \all" is speci�ed, all kinds of compound statements
are counted together, i.e. an if within a loop within an if counts for 3. This rule can be given
once for each of check, search, and count, and for each of the subrules. This way, it is possible
to have a level considered a warning (search), and one considered an error(check). Of course,
this makes sense only if the level for search is less than the one for check.

Ex:

check max_statement_nesting (loop, 3);

search max_statement_nesting (all, 5);

4.27 Movable Accept Statements

4.27.1 Syntax

<check|search|count> movable_accept_statements

(certain|possible [, <entity_list>])

<entity_list> ::= <entity name> {, <entity name>}

4.27.2 Action

This rule controls statements that are inside accept statements and could safely be moved
outside. Since it is good practice to block a client for the shortest time possible, any action that
does not depend on the accept parameters should not be part of an accept statement.

Statements that involve synchronisation (delay statements, accept or entry calls...) are not
movable. Statements (including compound statements) that reference the parameters of the
enclosing accept are not movable. In addition, statements that use entities whose names are
given as parameters to the rule are never considered movable. Note that if a generic entity name
is given, or the name of an entity declared in a generic package, all statements that use the
corresponding instantiated entity are considered not movable.

If the �rst parameter of the rule is certain, only statements after the last non-movable
statement are reported. If the �rst parameter is possible, a simple data
ow analysis is
performed, and every statement that does not reference a variable that appears to depend
(directly or indirectly) on a parameter is also reported.

Ex:

check movable_accept_statements (possible, Log.Report_Rendezvous);

4.27.3 Tips

The entity names given to the rule can be, for example, procedures whose execution must be
part of the accept statement for logical reasons. They can also be global variables, when the
rendezvous is intended to prevent concurrent access to these variables.

4.28 Naming Convention

4.28.1 Syntax

<check|search|count> naming_convention

([root] {<Location>} <Filter_Kind>,

[case_sensitive|case_insensitive] [not] "<Pattern>"

{, ...});

<Location> ::= global | local | unit

Chapter 4: Rules Usage 47

<Filter_Kind> ::= All |

Type |

Discrete_Type |

Enumeration_Type |

Integer_Type |

Signed_Integer_Type |

Modular_Integer_Type |

Floating_Point_Type |

Fixed_Point_Type |

Binary_Fixed_Point_Type |

Decimal_Fixed_Point_Type |

Array_Type |

Record_Type |

Regular_Record_Type |

Tagged_Type |

Class_Type |

Access_Type |

Access_To_Regular_Type |

Access_To_Tagged_Type |

Access_To_Class_Type |

Access_To_SP_Type |

Access_To_Task_Type |

Access_To_Protected_Type |

Private_Type |

Private_Extension |

Generic_Formal_Type |

Variable |

Regular_Variable |

Field |

Discriminant |

Record_Field |

Protected_Field |

Procedure_Formal_Out |

Procedure_Formal_In_Out |

Generic_Formal_In_Out |

Constant |

Regular_Constant |

Named_Number |

Integer_Number |

Real_Number |

Enumeration |

Sp_Formal_In |

Generic_Formal_In |

Loop_Control |

Occurrence_Name |

Entry_Index |

Label |

Stmt_Name |

Loop_Name |

Block_Name |

Subprogram |

Procedure |

Chapter 4: Rules Usage 48

Regular_Procedure |

Protected_Procedure |

Generic_Formal_Procedure |

Function |

Regular_Function |

Protected_Function |

Generic_Formal_Function |

Entry |

Task_Entry |

Protected_Entry |

Package |

Regular_Package |

Generic_Formal_Package |

Task |

Task_Type |

Task_Object |

Protected |

Protected_Type |

Protected_Object |

Exception |

Generic |

Generic_Package |

Generic_Sp |

Generic_Procedure |

Generic_Function

4.28.2 Action

This rule controls the declaration of identi�ers that do not follow the project's naming conven-
tions. The �rst parameter de�nes the kind of declaration to which the rule is applicable, and
other parameters are regular expressions that de�ne the patterns that must be matched. See
Chapter 7 [Syntax of regular expressions], page 78. Note that the pattern needs not include any
wildcard, but if it does, it must be enclosed in quotes.

If one or more <Location> keyword is speci�ed, the pattern applies only to identi�ers. Oth-
erwise, the pattern applies to all identi�ers, irrespectively of where they are declared. The
de�nition of locations is as follows:

� \unit": The identi�er is the de�ning name of a program unit.

� \global": The identi�er is declared in a package or a generic package, possibly nested in
other packages or generic packages.

� \local": All other cases.

If \case sensitive" is speci�ed, pattern matching considers casing. Otherwise (default or
\case insensitive"), casing is irrelevant. Note that the rule checks the name only at the place
where it is declared; casing might be di�erent when the name is used later.

If a pattern is preceded by \not", then the pattern must not be matched (i.e. the rule reports
when there is a match).

The rule will be activated if an identi�er is declared that does not match any of the \positive"
patterns (the ones without \not"), or if it matches any of the "negative" patterns (the ones with
a \not"). If only negative patterns are given, it is implicitely assumed that all other identi�ers
are OK. In other words, accepted identi�ers must have the form of (at least) one of the \positive"
patterns (if any), but not the form of one of the \negative" patterns.

Chapter 4: Rules Usage 49

The �lter kinds are organized hierarchically, as re
ected in the syntax above. To be valid,
the name must match the patterns speci�ed for its own �lter, and for all �lters above it in the
hierarchy. For example, a modular type declaration must follow the rules (if speci�ed) for \all",
\type","discrete type", \integer type" and \modular integer type". However, if a �lter kind is
preceded by \root", rules above it in the hierarchy are not considered (neither for itself not its
children). This is useful to make exceptions to a more general rule.

It is of course not necessary to specify all the �lter kinds, nor to specify �lters down to the
deepest level; if you specify a rule for \type", it will be applied to all type declarations, whether
there is a more speci�c rule or not.

For renamings, the applicable rule is the one for the renamed entity. Similarly, subtypes
and derived types must follow the rule for their respective original (full) type. Incomplete type
declarations are not checked, since their corresponding full declaration is (normally) checked.
Private types (including of course the full declaration of a private type) follow the rule for private
types, not the rules for their full type view (otherwise it would be privacy breaking).

Ex:

-- All identifiers must have at least 3 characters:

check naming_convention (all, "...");

-- Predefined name is forbidden:

check naming_convention (all, not Integer);

-- Types must either start or end with T

check naming_convention (type, case_sensitive "^T_",

case_sensitive "_T$");

-- Exception to the rule for "all":

-- No minimum length for "for loop" identifiers

check naming_convention (root loop_control, ".");

-- "Upper_Initials" naming convention:

check naming_convention

(all, case_sensitive "^[A-Z][a-z0-9]*(_[A-Z0-9][a-z0-9]*)*$");

-- All global variables must start with "G_"

check naming_convention (global variable, "G_");

4.28.3 Tips

Remember that a Regexp matches if the pattern matches any part of the identi�er. Use \^"
and \$" to match the beginning (resp. end) of the name, or both.

\class type" is applicable to subtypes that designate a class-wide type. Similarly, \ac-
cess to class type" is applicable to access types whose designated type is class-wide.

The rules directory of Adacontrol contains two �les named no_standard_entity.aru and
no_system_entity.aru. These are �les that contain a naming convention rule that forbids the
declaration of names declared in packages Standard and System, respectively. You can simply
\source" these �les from your own rule �le (or copy the content) if you want to disallow these
identi�ers.

Like usual, naming convention rule can be given multiple times, and can be disabled. How-
ever, consider the following:

Rule1 : check naming_convention (constant, "^c_");

Rule2 : check naming_convention (constant, "^const_");

Chapter 4: Rules Usage 50

The rule will trigger if a constant is declared that does not start with either \c " or \const ".
But here, we have two di�erent rule labels. The message will refer to the �rst label encountered
in the rule �le; this is the label that must be mentionned in a disabling comment, unless you
simply disable \naming convention".

4.28.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

4.29 No Safe Initialization

4.29.1 Syntax

<check|search|count> no_safe_initialization [(<check_kind> [,<check_kind>])]

check_kind ::= out_parameter | variable

4.29.2 Action

This rule controls variables and/or out parameters that are not \safely" initialized. A variable
(or out parameter) is considered safely initialized if there is an initialization expression in its
declaration, or if it is given a value in the �rst statements of the corresponding body, until
anything other than assignments, if or case statements, or procedure calls is encountered. Vari-
ables assigned in if or case statements must receive a value in all paths. The value can be given
either through assignment or by having the variable as an out (but not in out) parameter of
a procedure call. This rule can be given only once for each value of <check kind>. Without
parameters, it is equivalent to giving both.

Note that the variable must be assigned to globally, i.e. assigning to some elements of an
array, or some �elds of a record, does not count as an initialization of the variable.

Ex:

check no_safe_initialization (out_parameter);

4.29.3 Limitation

Due to a weakness of the ASIS standard, dispatching calls and calls to procedures that are
attributes are not considered for the initialization of variables. Note that for attributes, only
'Read and 'Input have an out parameter.

In the rare case where a variable is initialized by a dispatching call or an attribute call, this
limitation will result in a false positive. Such a case is detected by the rule \uncheckable". See
Section 4.46 [Uncheckable], page 63. It is then easy to disable the rule for this variable. See
Section 3.7 [Disabling rules], page 22.

4.30 Non Static

4.30.1 Syntax

<check|search|count> non_static [(context_kw {, context_kw})];

context_kw ::= index_constraint | discriminant_constraint | instantiation

4.30.2 Action

This rule controls that expressions used in certain contexts are static. These are index con-
straints if the keyword index_constraint is given, discriminant constraints if the keyword
discriminant_constraint is given, or instantiations if the keyword instantiation is given.
If no keyword is given, all contexts are controlled.

This rule is useful in contexts where the space occupied by data structures must be com-
putable from the program text.

Chapter 4: Rules Usage 51

Ex:

check non_static (index_constraint);

4.31 Not Elaboration Calls

4.31.1 Syntax

<check|search|count> not_elaboration_calls

(<subprogram name> {, <subprogram name>});

4.31.2 Action

This rule controls subprogram calls (procedure, function or entry calls) that are performed at
any time except during the elaboration of library packages.

Ex:

search not_elaboration_calls (Data.Initialize);

4.31.3 Limitations

Due to an (allowed by ASIS standard) limitation of ASIS-for-Gnat, the rule will not detect calls
to subprograms that are implicitely de�ned, like calling a "+" on Integer. Fortunately, it is
very unlikely that the user would want to forbid that kind of calls in non-elaboration code.

Note also that calls that cannot be statically determined, like calls to dispatching operations
or calls through pointers to subprograms cannot be detected either.

4.32 Parameter Aliasing

4.32.1 Syntax

<check|search|count> parameter_aliasing [(Certain|Possible|Unlikely)];

4.32.2 Action

This rule controls aliased use of variables in subprogram calls. Speci�cally, this rule will identify
calls where the same variable is given as an actual to more than one out or in out parameter,
like in the following example:

procedure Proc (X, Y : out Integer);

...

Proc (X => V, Y => V);

There are many cases where aliasing cannot be determined statically. The optional parameter
speci�es how aggressively the rule will check for possible aliasings. Possible values are (case
irrelevant):

� Certain (default): Only cases where aliasing is statically certain are output.

� Possible: In addition, cases where aliasing may occur depending on the value of an indexed
component are output. These may or may not be true aliasing, depending on the algorithm.
For example, given:

Swap (Tab (I), Tab (J));

there is no aliasing, unless I equals J.

If all expressions used for indexing in both variables are integer or enumeration literals, the
rule will be able to eliminate the diagnosis of aliasing (if the values are di�erent). This does
not cover all cases of static expressions, but will avoid unnecessary messages in cases like:

Swap (Tab (1), Tab (2));

Chapter 4: Rules Usage 52

� Unlikely: In addition, cases where aliasing may occur due to access variables pointing to
the same variable are output. These may or may not be true aliasing, depending on the
algorithm, but should normally occur only as the result of very strange practices, like in
the following example:

type R is
record

X : aliased Integer;

end record;
X : R;

Y : Access_All_Integer := R.X'access;

...

P (X, Y.all);

There will be no false positive with \Certain". There will be no false negative with \Unlikely"
(but many false positives). \Possible" is somewhere in-between.

The rule may be speci�ed at most once for each value of the parameter. This allows for
example to \check" for \Certain" and \search" for \Possible".

Ex:

check parameter_aliasing;

search parameter_aliasing (Possible);

Note that the rule is quite clever: it will consider partial aliasing (like a record variable as
one parameter, and one of its components as another parameter), and will not be fooled by
renamings.

4.32.3 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not considered. This limitation
will be removed as soon as we �nd a way to work around this problem, but the issue is quite
di�cult!

4.33 Other Dependencies

4.33.1 Syntax

<check|search|count> other_dependencies (<unit> {,<unit>});

4.33.2 Action

This rule controls semantic dependencies (i.e. with clauses) to units other than those indicated.
This rule can be speci�ed only once.

Ex:

check other_dependencies (Ada.Text_IO);

4.34 Potentially Blocking Operations

4.34.1 Syntax

<check|search|count> potentially_blocking_operations;

4.34.2 Action

This rule controls usage of potentially blocking operations (as de�ned in LRM 9.5.1 (8..16))
from within protected operations. It does follow the call graph, therefore identifying indirect
potentially blocking operations. All protected types in the program are controlled.

Chapter 4: Rules Usage 53

Of course, calls to standard subprograms (notably IOs) that are de�ned to be potentially
blocking are recognized.

Ex:

check potentially_blocking_operation;

4.34.3 Limitation

There is one case de�ned in LRM E.4(17) which is not recognized: remote subprograms calls.

4.34.4 Tips

This rule is very clever at �nding potentially blocking operations resulting from external calls
(or requeues) to the current protected object, even if this happens through a long chain of
subprogram calls. Typically, this happens when a protected operation calls a subprogram,
which in turn makes a call to an operation of the same protected object. Such calls generally
result in dead-locks.

Therefore, it is advisable to run this rule on any program that exhibits mysterious (and hard
to �nd) deadlocks that seem to involve protected objects.

When a single protected object is being analyzed, the rule will diagnose a circularity if there
is a call to an operation of the same object in the call chain; however, if a protected type is being
analyzed, the rule will diagnose a circularity if there is a call to any object of the same type in
the call chain. Although it is possible to construct examples of this latter case where there is
no risk of deadlock, it is so contrieved that it certainly deserves being looked at. But since the
call is not 100% certain to be potentially blocking, the message will tell \possible external call"
instead of \external call" in this case.

4.35 Pragmas

4.35.1 Syntax

<check|search|count> pragmas

(all|nonstandard|<pragma name> {, <pragma name>});

4.35.2 Action

This rule controls usage of one or several speci�c pragmas. If the special name \nonstandard"
is given, then all implementation-de�ned and unrecognized pragmas will be controlled. If the
special name \all" is given, then all pragmas will be controlled. Ex:

check pragmas (elaborate_all, elaborate_body);

4.35.3 Tips

If \all" and/or \nonstandard" is given together with a speci�c pragma name in a \search" or
\check" rule, a message is issued only for the most speci�c occurrence. However, for \count",
all appropriate occurrences are counted, i.e. given the following rules:

C1 : count pragmas (annotate);

C2 : count pragmas (nonstandard);

C3 : count pragmas (all);

Counter C1 will report the number of occurrences of pragma Annotate (a non-standard Gnat
pragma), counter C2 will report the number of non-standard pragmas (including occurrences of
Annotate), and counter C3 will report the total number of pragmas (including occurrences of
Annotate).

Chapter 4: Rules Usage 54

4.36 Reduceable Scope

4.36.1 Syntax

<check|search|count> reduceable_scope [no_blocks]

4.36.2 Action

This rule controls declarations that could be moved to some inner scope. More precisely, it will
report on any declaration that is referenced only from a single, inner scope. However, entities
that are used in a 'Access or 'Address attribute are never reported, since moving them would
change their accessibility level.

If no_blocks is speci�ed, the rule will not consider blocks as possible targets for a reduced
scope.

As a side e�ect, the rule will report about entities that are declared but not used.

Ex:

check reduceable_scope;

4.37 Representation Clauses

4.37.1 Syntax

<check|search|count> representation_clauses

[(<repr_kw>|<attribute> {, <repr_kw>|<attribute>}, ...)];

repr_kw ::= at | at_mod | enumeration | record

4.37.2 Action

This rule controls usage of representation clause. Without parameter, it will control all repre-
sentation clauses, otherwise it will control the representation clauses given as parameter.

\at" checks for address clauses given in Ada 83 style (\for XXX use at"). \at mod" checks
for alignment clauses given in Ada 83 style (\for T use record at mod XX;"). \enumera-
tion" checks for enumeration representation clauses. \record" checks for record representation
clauses. In addition to these keyword, any speci�able attribute can be given (including the
initial \"'); the rule will check for a speci�cation of this attribute. Note that double attributes
(like \'CLASS'INPUT") can be given, and are considered di�erent from the simple attribute
(\'INPUT"). It is of course possible to specify both.

Ex:

All_Addresses: check representation_clauses (at, 'address);

All_Input: check representation_clauses ('input, 'class'input);

count representation_clauses ('SIZE);

4.38 Return Type

4.38.1 Syntax

<check|search|count> return_type [(<type_kind> {, <type_kind>})];

type_kind ::= class_wide | unconstrained_discriminated |

unconstrained_array | task | protected

4.38.2 Action

This rule controls functions whose return type belongs to one of the indicated type kinds:

Chapter 4: Rules Usage 55

� class_wide controls class-wide types

� unconstrained_discriminated controls types with discriminants (but not constrained
subtypes of such types)

� unconstrained_array controls unconstrained array types

� task controls task types, or composite types that include tasks as subcomponents.

� protected controls protected types, or composite types that include protected objects as
subcomponents.

If no type kind is speci�ed, all type kinds are controlled. Note that more than one kind may
apply to a type: for example, a function can return a class-wide type with discriminants that
includes tasks and protected objects as subcomponents. In this case, several messages are issued
for the same type.

Ex:

check return_type (unconstrained_discriminated, unconstrained_array);

4.38.3 Limitations

There is a (very rare) case where AdaControl does not properly recognize that a function returns
a class-wide type. This is due to an ASIS bug �xed in version 5.05, and therefore appears only
with earlier versions of the compiler. This happens when a generic unit contains functions whose
return type is a generic inde�nite formal type, and this generic is instantiated with a class-wide
type.

4.39 Side E�ect Parameters

4.39.1 Syntax

<check|search|count> Side_Effect_Parameters

(<function name> {, <function name>});

4.39.2 Action

This rule controls subprogram calls or generic instantiations where di�erent actual parameters
call functions known to have side e�ects. This is dangerous practice, since correct behaviour
may depend on a certain evaluation order of parameters, which is not speci�ed by the language.

All functions mentionned as parameters in the rule are assumed to interfere, i.e. the rule will
signal if any of these functions is called more than once in the parameters of a call.

It is allowed to give the name of a generic function, or of a function declared in a generic
package; in this case, all functions resulting from instantiations of these generics will be consid-
ered.

In the case of renamings, you must give the name of the original function; the rule will work
correctly if the call is made through a renaming of this function.

Ex:

check side_effect_parameters (F1);

check side_effect_parameters (G1, G2);

Here, F1 has a side e�ect, and the rule will signal if it is called more than once. G1 and G2
are assumed to interfere, and therefore the rule will signal if either is called more than once, or
if both are called. However, having a call that mentions F1 and G2 is OK.

4.39.3 Limitation

Due to the size of internal structures, this rule may not be given more than 100 times.

Chapter 4: Rules Usage 56

Due to an unimplemented feature of ASIS-for-Gnat, this rule will not process defaulted
parameters, and hence not detect interferences due to calling a side-e�ect function through the
default value.

4.40 Silent Exceptions

4.40.1 Syntax

<check|search|count> Silent_Exceptions (<element> {, <element>});

element ::= <subprogram name> | raise | return | requeue

4.40.2 Action

This rule controls exception handlers that can cause exceptions to silently disappear, i.e. han-
dlers that do not call one of the given subprograms (for example a reporting procedure) nor
perform other required operations, like returning, requeuing, or re-raising an exception.

The parameters are the Ada callable constructs considered \reporting". In addition to sub-
program and entry names, the special names \raise", \return" and \requeue" mark raise state-
ments, return statements, and requeue statements (respectively) as reporting. If a generic pro-
cedure or function is given to the rule, then all corresponding instances are considered reporting
subprograms. If a generic package is given, any instantiation (in an inner block of the handler)
is considered reporting.

Note that the purpose of this rule is to require the reporting calls to be \eye-visible", i.e.
textually written in the exception handler. For example, the rule will accept a call to a procedure
inside the sequence of statements of a package body declared in some inner block; however, it will
not accept the same call if it is in the sequence of statements of a package instantiation (unless
the generic package is itself mentionned as reporting), because the call is not \eye-visible". For
the same reason, a call to a reporting function which happens as the default value of an omitted
parameter in some other call will not be accepted.

This rule can be given once for each of check, search and count. This way, it is possible to
have a level considered a warning (search), and one considered an error (check).

Ex:

check silent_exceptions (raise, reports.trace);

If the raise statements or subprogram calls appear only in if or case statements, but not in
all possible paths, or if they appear only in the body of loop statements, the rule will issue a
message asking for a manual veri�cation, since it cannot be statically determined whether the
proper treatment happens in every case.

If \raise" is given as a parameter, the procedures Ada.Exceptions.Raise_Exception and
Ada.Exceptions.Reraise_Occurrence are automatically added to the list of procedures for
both Check and Search, unless they are explicitely speci�ed as a parameter in a rule. This
way, it is possible to consider them as reporting procedures for Check (for example) and not for
Search.

4.40.3 Limitations

Currently, \return" includes all return statements. It would be nice to separate function returns
from procedure or accept returns. This is expected to be done in the next version of AdaControl.

There are two cases that are not statically checkable, and thus may not be identi�ed by
this rule: if an exception is raised in an inner block statement and handled locally, and if the
exception handler aborts the current task.

If a reporting function is given, there are a few cases where the calls will not be recognized:

� inside a pragma

Chapter 4: Rules Usage 57

� in a representation clause

� in a code statement (i.e. as a �eld of a machine code instruction)

This limitation is intentional: these are such weird places to call a reporting function that it
seems better to draw attention to it...

4.41 Simpli�able Expressions

4.41.1 Syntax

<check|search|count> Simplifiable_Expressions

[(<Expression_kw> {, <Expression_kw>})];

Expression_kw ::= range | logical | logical_true |

logical_false | parentheses

4.41.2 Action

This rule controls expressions that can be simpli�ed. The \range" parameter controls expressions
of the form T'First .. T'Last that should be T'range (or even simply T). \logical true"
controls redundant boolean expressions of the form <expr> = True (or /=), and \logical false"
does the same for comparisons with false. \logical" is the same as specifying both \logical true"
and \logical false". \parentheses" controls unnecessary parentheses like those surrounding the
expression of an assignment, an \if" or a \case" statement, or those that are not required by
operators precedence rules.

Ex:

search simplifiable_expressions (parentheses);

check simplifiable_expressions (range, logical);

4.41.3 Tips

There are cases where parentheses may seem unnecessary, but are (purposedly) not reported by
this rule. Consider for example:

X := A + (B + C);

Removing the parentheses would change the expression to mean:

X := (A + B) + C;

If the "+" operator has be rede�ned and is no more associative, this would actually change
the meaning of the program. In a less contrieved example, note that:

X mod (A*B)

is not the same as:

X mod A * B

For these reasons, and to make the rule easier to understand for the user, the rule does not
report unnecessary parentheses between operators of identical priority levels.

4.42 Special Comments

4.42.1 Syntax

<check|search|count> Special_Comments ("<pattern>" {, "<pattern>"});

Chapter 4: Rules Usage 58

4.42.2 Action

This rule controls comments that match one of the given patterns. Only the \useful" part of the
comment is matched against the patterns, i.e. the part after the \--" and spaces following it.
Patterns are given using the full Regexp syntax. see Chapter 7 [Syntax of regular expressions],
page 78 for details. Note that the pattern needs not include any wildcard, but if it does, it must
be enclosed in quotes. Pattern matching is always case insensitive.

This rule is especially useful to �nd lines with comments like \TBSL" (To Be Supplied
Later), which are often used to mark places where something should be done before releasing
the program.

Ex:

check special_comments ("TBSL");

-- Report places where rules are disabled:

search special_comments ("##.* off");

4.42.3 Tips

Remember that a Regexp matches if the pattern matches any part of the identi�er. Use \^"
and \$" to match the beginning (resp. end) of the comment, or both.

4.42.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

4.43 Statements

4.43.1 Syntax

<check|search|count> statements (<statement_kw> {, <statement_kw>};

statement_kw ::=

abort | accept_return | asynchronous_select |

block | case_others | case_others_null |

conditional_entry_call | delay | delay_until |

dispatching_call | entry_return | exception_others |

exception_others_null | exit | exit_for_loop |

exit_while_loop | for_loop | function_return |

goto | labelled | loop_return |

multiple_exits | no_else | null |

procedure_return | raise | raise_standard |

requeue | reraise | selective_accept |

simple_loop | terminate | timed_entry_call |

unconditional_exit | unnamed_block | unnamed_exit |

unnamed_loop_exited | unnamed_multiple_loop | unnecessary_null |

untyped_for | while_loop | while_true

4.43.2 Action

This rule controls usage of certain Ada statements.

� Statement keywords that are Ada keywords control the corresponding Ada statements; note
that delay will control only relative delay statements (i.e. it will not control the delay until
statement).

� accept_return controls return statements that return from an accept statement,
entry_return controls return statements that return from a (protected) entry body, and

Chapter 4: Rules Usage 59

procedure_return controls return statements that return from a procedure. loop_return
controls return statements that appear inside a loop statement.

� asynchronous_select controls the select ... then abort statement. conditional_entry_
call controls the select ... else statement. timed_entry_call controls the select ... or
delay statement. selective_accept controls the regular select statement.

� block controls all block statements, while unnamed_block controls blocks without a name.

� case_others controls any when others path in a case statement, while case_others_null
controls only when others paths in a case statement that contain only null statements.

� dispatching_call controls all dispatching calls. Note that this subrule controls dispatching
procedure calls as well as dispatching function calls, although the latter is technically an
expression and not a statement.

� exit controls all exit statements, while exit_for_loop and exit_while_loop control exit
statements that terminate for and while loops, respectively. unconditional_exit controls
exit statements without a when condition. multiple_exits controls loop that have more
than one exit statement. unnamed_loop_exited controls exit statements that terminate an
unnamed loop.

� exception_others controls any when others exception handler, while exception_others_
null controls only when others exception handlers that contain only null statements.

� for_loop controls all for loops.

� function_return controls return statements from functions. Obviously, return statements
cannot be forbidden in functions; this keyword controls that there is only one return state-
ment in the body of functions, and at most one return statement in each exception handler
of the exception part of functions.

� labelled controls statements with a label (true statement labels, not block and loop
names).

� no_else controls if statements that have no else path.

� null controls all null statements, while unnecessary_null controls only null statements
that serve no purpose and can be removed. Note that if a null statement carries a label, it
is not considered unnecessary.

� raise controls all raise statements, while raise_standard controls raise statements that
raise one of the prede�ned exceptions (those declared in package Standard) and reraise

controls only raise statements in exception handlers that reraise the same exception. Note
that raise_standard and reraise take precedence over raise if they are mentionned
together, but that raise will control all form of raise statements if no more speci�c subrule
is given.

� simple_loop controls simple loops, i.e. those that are neither while nor for loops.

� unnamed_exit controls exit statements without a loop name that exits from a named loop.

� unnamed_multiple_loop controls nested loops that are not named (i.e. under this rule,
only loops that contain no inner loop, and are not nested in another loop, are allowed not
to be named). The kind of loop (plain, for, while) is not considered.

� untyped_for controls for loops whose that uses a range without an explicitely named type
(i.e. for I in 1..10 loop)

� while_loop controls all while loops, while while_true controls while loop statements
where the condition is a plain True.

Ex:

search statements (delay);

check statements (goto, abort);

check statements (case_others_null, exception_others_null);

Chapter 4: Rules Usage 60

4.43.3 Tips

while_true may seem a strange thing to check, since no Ada programmer is supposed to write
this. However, experience shows that it is a good indicator of code written by people who did
not get proper Ada training. Such code is certainly worth a peer review...

4.44 Style

4.44.1 Syntax

<check|search|count> style;

<check|search|count> style (casing_identifier, <casing_kw>);

<check|search|count> style (casing_attribute, <casing_kw>);

<check|search|count> style (casing_pragma, <casing_kw>);

<check|search|count> style (compound_statement);

<check|search|count> style (default_in);

<check|search|count> style (exposed_literal, <type_kw>, {, <value_place>});

<check|search|count> style (multiple_elements {,<element_kw>});

<check|search|count> style (negative_condition);

<check|search|count> style (no_closing_name [, <max_lines>]);

<check|search|count> style (numeric_literal, [not] <base> [, <block_size>]);

<check|search|count> style (positional_association

{,<context_kw> [,<max_allowed>]}

| [, <max_allowed>]);

<check|search|count> style (renamed_entity);

casing_kw ::= uppercase | lowercase | titlecase | original

context_kw ::= pragma | discriminant | call | instantiation |

array_aggregate | record_aggregate

element_kw ::= clause | declaration | statement

type_kw ::= integer | real | character | string

value_place ::= <value> | <place>

value ::= <integer number> | <real number> | <pattern>

place ::= number | constant | var_init | repr_clause

4.44.2 Action

This rules controls usage of various Ada coding style. The �rst parameter speci�es which style
aspect is to be checked:

� \casing identi�er", \casing attribute", and \casing pragma" control that identi�ers (re-
spectively attributes or pragmas) use the appropriate casing. \original" (which is allowed
only for identi�ers) means that identi�ers must use the same casing as in their declaration.

� \compound statement" controls that compound statements span at least a minimum num-
ber of lines: 3 for if statements, loop statements, block statements, and accept statements
with a body; 4 for case statements, selective accept statements, and timed entry call state-
ments; and 5 for conditional entry call statements and asynchronous select statements.

� \default in" controls subprograms, entries and generics declarations that omit an explicit
in mode for a parameter.

� \exposed literal" controls the usage of literals (aka \magic values"), that appear outside
of constants or named numbers declarations. The second parameter tells to which kind of
literals the rule applies. The (optional) indicated values that follow are allowed at any place;
for strings, they are regular expressions. See Chapter 7 [Syntax of regular expressions],
page 78. Commonly allowed values are 0 and 1 for integer literals, 1.0 and 0.0 for real

Chapter 4: Rules Usage 61

literals and "^$" (the empty string) for string literals. At most 20 values of each kind may
be speci�ed. In addition, one or several <place> keyword can be used to specify constructs
where any literal is allowed: \number" stands for named number declarations, \constant"
for constant declarations, \var init" for the initialization expression of variable declarations,
and \repr clause" for representation clauses. If no <place> is given, it is taken as number,
constant, i.e. any literal is allowed in named numbers and constant declarations.

� \multiple elements" controls clauses, declarations, and statements that do not start on a
line of their own (i.e. when there are more than one of these on the same line). Extra
parameters specify which kind of element to check; if not speci�ed, all kind of elements are
controlled.

� \negative condition" controls \if" statements with an \else" part and no \elsif", where the
condition starts with a not, and should therefore preferably be expressed positively.

� \no closing name" controls declarations, like package or subprograms, that allow (but do
not require) repeating the name at the end of the declaration, and where the closing name
is omitted (which is considered bad style in general). However, it can be acceptable to allow
the omission of closing names for very short constructs; therefore this rule has an optional
parameter specifying the maximum number of lines of a construct for which omitting the
closing name is allowed. This rule can be given only once for each of check, search and
count. This way, it is possible to have a length considered a warning (search), and one
considered an error (check). Of course, this makes sense only if the length for search is less
than the one for check. If no length is speci�ed, all occurrences of missing closing names
are signaled.

� \numeric literal" controls the presentation of numeric literals, depending on the base (wich,
as required by Ada rules, must be in the range 2..16). If \not <base>" is speci�ed as the
second parameter, the given base may not be used for based literals. Otherwise, there must
be a third (integer) parameter to specify the size of blocks of digits for that base, i.e. there
must be an underscore character to separate digits every <block size> position. Typically,
<block size> is 3 for base 10, 4 for base 2, etc.

� \positional association" controls pragmas, discriminants, calls, aggregates, or instantiations
that use positional associations. Extra parameters specify which kind of construct to check;
if not speci�ed, all constructs are controlled. Each of the construct keywords is optionally
followed by an integer value; if it is speci�ed, it gives the maximum number of associations
that are allowed to be positional, i.e. the rule will trigger only if there are more than the
indicated number of associations. See examples below.

Note that for calls, positional association is not reported for operators that use in�x notation
nor for calls to subprograms that are attributes, since named notation is not allowed in
these cases. For calls, another rule controls positional associations according to the value of
parameters rather than their number: See Section 4.18 [Insu�cient Parameters], page 42.

� \renamed entity" controls occurrences of identi�ers within the scope of a renaming decla-
ration for them; i.e. it enforces that when an entity has been renamed, the original name
should not be used anymore.

Ex:

search style (no_closing_name);

search style (no_closing_name, 5);

check style (casing_identifier, original);

check style (default_in);

check style (literal, 10, 3);

check style (exposed_literal, integer, 0, 1);

check style (exposed_literal, real, 0.0, 1.0);

Chapter 4: Rules Usage 62

-- All positional associations:

check style (positional_association);

-- All positional associations in calls and aggregates:

check style (positional_association, aggregate, call);

-- All positional associations with more than 3 elements:

search style (positional_association, 3);

-- Positional associations in calls with more than 3 elements,

-- and positional associations in aggregates with more than 4 elements:

search style (positional_association, call, 3, aggregate, 4);

Without parameter, the rule will control all style aspects with parameter values that corre-
spond to the most commonly used cases, i.e. it is equivalent to the following:

style (no_closing_name);

style (casing_identifier, original);

style (casing_attribute, titlecase);

style (casing_pragma, titlecase);

style (positional_association);

style (default_in);

style (negative_condition)

style (multiple_elements)

style (literal, 10, 3);

style (exposed_literal, integer, 0, 1)

style (exposed_literal, real, 0.0, 1.0);

4.44.3 Tips

There are two kinds of calls where the rule does not complain about usage of positional asso-
ciation: in�x operator calls (since requiring named notation would not allow in�x notation any
more), and calls to subprograms that are attributes (since named notation is not allowed for
these).

In many cases, badly laid-out compound statements will trigger both the \multiple elements,
statement" and the \compound statement" subrules. For example:

if C then I := 1; end if;

will complain that the assignment is on the same line as the if, and that the if statement
spans less than 3 lines. However, the subrules are not equivalent. For example,

if C then I := 1;

end
if;

will only �nd that the assignment is on the same line as the if, while

if C then
I := 1; end if;

will only �nd that the if statement spans less than 3 lines. In most cases, you'll want to
specify both subrules to ensure proper lay-out.

4.44.4 Limitations

If a prede�ned operator or an attribute is renamed, the \renamed entity" subrule cannot check
that the original entity is not used in the scope of the renaming. Such cases are detected by the
rule \uncheckable". See Section 4.46 [Uncheckable], page 63.

Chapter 4: Rules Usage 63

4.45 Terminating Tasks

4.45.1 Syntax

<check|search|count> terminating_tasks

4.45.2 Action

This rule controls tasks that can terminate. A task is considered a terminating task if its
last statement is not an unconditional loop, or this if this loop is exited. It is also considered
terminating if it contains a selective accept with a terminate alternative.

Since this rule has no parameters, it can be given only once.

Ex:

check terminating_tasks

4.45.3 Tips

There is still one case where a task terminates, which is not reported by this rule: when a
task is aborted. This is intended, since there are cases (like mode changes) where a logically
non-terminating task is aborted.

If aborts are also to be reported, use the rule \statements (abort)". See Section 4.43 [State-
ments], page 58.

4.46 Uncheckable

4.46.1 Syntax

<check|search|count> Uncheckable [(<risk_kw> [,<risk_kw>])];

<risk_kw> ::= false_positive | false_negative | missing_unit

4.46.2 Action

If the keyword \missing unit" is given, this rule controls missing units, i.e. units not found (and
therefore not controlled) will result in an usual error message.

Otherwise, this rule controls constructs that are not static and prevent other rules from being
fully reliable. This rule is special, since it really a�ects the way other rules behave when they
encounter a statically uncheckable construct. Therefore, if a label is given, the message will
include the label as usual, with an indication of the rule that triggered the message; if no label
is given, the message will include the name of the rule that detected the uncheckable construct,
not \uncheckable" itself.

If the keyword \false negative" is given, the rule will control constructs that could re-
sult in false negatives, i.e. possible violations that would go undected, while if the keyword
\false positive" is given, it will control constructs that could result in false positives, i.e. error
messages when the rule is not really violated. If no keyword is given, both occurrences are
controlled.

This rule can be given only once for each of value of the parameters.

Ex:

check uncheckable (false_negative);

search uncheckable (false_positive);

check uncheckable (missing_unit);

4.46.3 Tips

This rule is especially important when AdaControl is used in safety critical software, since it will
detect constructs that could escape veri�cation. Such constructs should be either disallowed, or

Chapter 4: Rules Usage 64

require manual inspection. On the other hand, in casual software, it may lead to many messages,
since for example dispatching calls are uncheckable with many rules.

4.46.4 Limitation

With \missing unit", the message does not include a reference to a source location, since there is
no place in the source which can be considered as the origin of the error. If you run AdaControl
from GPS, there will always be a separate category (\Uncheckable") in the locations window,
under which the message will appear, with a �le name of \none". Don't try to click on the error
message, since GPS will �nd no �le named \none"!

4.47 Unnecessary Use Clause

4.47.1 Syntax

<check|search|count> unnecessary_use_clause;

4.47.2 Action

This rule controls use clauses that do not serve any purpose and can safely be removed. This
happens in two cases:

� A use clause is given, but no element from the corresponding package is mentionned in its
scope.

� A use clause is given within the scope of an enclosing use clause for the same package.

In the �rst case, just remove the use clause. In the second case, the rule will signal the
location of the enclosing use clause. If you also have a message that the outer use clause is
unnecessary, this means that all references to the package appear inside the inner use clauses,
and that the outer one can be removed. If not, you can either remove the inner use clauses, or
remove the outer one and add more local use clauses where necessary.

This rule will also signal use clauses given in a package speci�cation that can safely be moved
to the body. Since this rule has no parameters, it can be given only once (otherwise, it is an
error).

Ex:

search unnecessary_use_clause;

4.47.3 Limitations

There are some rare cases where the rule may signal that a use clause is not necessary, where it
actually is. There is no risk associated to this since if you remove the use clause, the program
will not compile.

The �rst one comes from a limitation of the ASIS standard: if the only use of the use clause
is for making the \root" de�nition of a dispatching call visible.

The second one comes from a limitation in ASIS-for-Gnat. This happens when the only use
of the use clause is for making an implicitely declared operation (an operation which is declared
by the compiler as part of a type derivation) visible, and when:

� the operation is the target of a renaming declaration;

� or the operation is passed as an actual to a generic instantiation;

� or all operands of the operation are universal (i.e. untyped).

Since these problems come from intrinsic limitations of ASIS, there is nothing we can do
about it. When this happens, you can disable the unnecessary use clause rule using the line
(or block) disabling feature. See Section 3.7 [Disabling rules], page 22. Note that for the third
alternative of the second case, you can also qualify one of the parameters, so it is not universal
any more.

Chapter 4: Rules Usage 65

4.48 Unsafe Paired Calls

4.48.1 Syntax

<check|search|count> unsafe_paired_calls

(<Opening procedure>, <Closing procedure> [, <Lock type>]);

4.48.2 Action

This rule controls usage of calls to operations that are normally paired (like P/V operations)
and do not follow the "safe" pattern de�ned below. The following explanations are given in
terms of \locks" since this is the primary use of this rule, however the rule can be used for any
calls that need to be properly paired.

The rule can deal with three di�erent kinds of locks:

� abstract state machines: There is no \lock" object, locking is done directly inside the
procedures. The <Lock type> parameter of the rule must not be provided in that case.

� object abstract data types: The procedure operates on an object (generally of a private type)
representing the \lock" object, passed as an \in out" parameter. The third parameter must
be the corresponding type, and the rule will control that all matching pairs of calls refer
statically to the same variable.

� reference abstract data types: The procedure operates on a reference that designates the
\lock" object, passed as an \in"parameter. The third parameter must be the corresponding
type, which must be discrete or access, and the rule will control that all matching pairs
of calls refer statically to the same value (for discrete types) or to the same constant (for
access types).

The "safe" pattern is de�ned as follows:

� A call to the �rst procedure is the �rst statement of a handled sequence of statements;

� A call to the second procedure is the last statement of the same handled sequence of
statements;

� Corresponding calls of a pair use the appropriate value for the \lock" parameter (if any),
as explained above.

� There is no other call to either operation in the statements of the handled sequence of
statements, except in nested blocks or accept statements; calls in such inner statements
shall not reference the same values or variables as outer ones.

� There is an exception handler for "others" in the handled sequence of statements.

� Every exception handler of the handled sequence of statements includes a single call to the
second operation, using the appropriate value or variable for the lock parameter.

Typically, the \safe" pattern corresponds to the following structures:

-- Abstract state machine

begin
P;

-- Do something

V;

exception
when others =>

V;

-- handle exception

end;

-- Object abstract data type

Chapter 4: Rules Usage 66

declare
My_Lock : Lock_Type;

begin
P (My_Lock);

-- Do something

V (My_Lock);

exception
when others =>

V (My_Lock);

-- handle exception

end;

-- Reference abstract data type

declare
Lock_Ptr : constant Lock_Access := Get_Lock;

begin
P (Lock_Ptr);

-- Do something

V (Lock_Ptr);

exception
when others =>

V (Lock_Ptr);

-- handle exception

end;

Ex:

check unsafe_paired_calls (Semaphore.P, Semaphore.V, Semaphore.Lock_Access);

4.48.3 Tips

If the <Lock type> parameter is provided, both procedures must have a single parameter of
the given type, it must not correspond to an \out" parameter, and if it corresponds to an \in"
parameter, the type must be discrete or access.

This rule can be speci�ed several times, and it is possible to have the same procedure be-
longing to several rules. For example, if you have a Mask_Interrupt procedure that should be
matched by either Unmask_Interrupt or General_Reset (all declared in package IT_Driver),
you can specify:

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

IT_Driver.Unmask_Interrupt);

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

IT_Driver.General_Reset);

Normally, the legality of a rule is checked when the rules �le is parsed, and execution does
not start if there is any error. However, the legality of the provided type can be checked only
during the analysis. If the type is incorrect for some reason, a proper error message is issued
and execution stops immediately.

4.48.4 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not considered. Especially,
this means that the <Lock type> cannot be class-wide. Such calls are detected by the rule
\uncheckable". See Section 4.46 [Uncheckable], page 63.

Due to limitations of internal date structures, this rule can be speci�ed at most 32 times.

Chapter 4: Rules Usage 67

4.49 Unsafe Unchecked Conversion

4.49.1 Syntax

<check|search|count> unsafe_unchecked_conversion

4.49.2 Action

This rule controls instances of Unchecked_Conversion between types where the following con-
ditions are not met:

� A size clause has been speci�ed for both types

� Both sizes are equal

Moreover, a special message is given if any of the types is a class-wide type (certainly a very
questionable construct!).

Ex:

check unsafe_unchecked_conversion

4.49.3 limitation

There are cases where a size clause is given for a type, but AdaControl is unable to evaluate it.
This happens especially if the size clause refers to a size attribute of a prede�ned type, like:

for T'Size use Integer'size;

This can lead to false positives (i.e. detection of instantiations of Unchecked_Conversion
that are actually OK. Such cases are detected by the rule \uncheckable". See Section 4.46
[Uncheckable], page 63.

4.50 Usage

4.50.1 Syntax

<check|search|count> usage

(variable|constant|object {,[not] from_spec|read|written|initialized});

<check|search|count> usage

(exception {,[not] from_spec|raised|handled});

<check|search|count> usage

(task {,[not] from_spec|called|aborted});

<check|search|count> usage

(protected {,[not] from_spec|called});

<check|search|count> usage

(all [,[not] from_spec]);

4.50.2 action

This rule controls how certain entitities (variables, constants, exceptions, tasks and protected
objects) are used. The �rst parameter de�nes the class of entities to be controlled (\object"
stands for both \constant" and \variable", and \all" stands for all classes). If only one parameter
is given, usage of all entities belonging to the indicated class are reported . Otherwise, other
parameter(s) are keyword that restrict the kind of usage being controlled.

\[not] from spec" restrict entities being checked to those that appear in (generic) package
speci�cations. Other keywords carry their obvious meaning, and are allowed only where appro-
priate. The rule will output the information only for objects that match all the conditions given.
A combination of parameters can be given only once for each of \check", \search", and \count".

The report includes the kind of unit that declares the entity (normal unit, instantiation, or
generic unit) and whether the entity is known to be initialized, read, written, raised, handled,

Chapter 4: Rules Usage 68

called, or aborted, depending on the entity's class. Some combinations give an extra useful
message (for example, a variable which is initialized and read but not written will produce a
\could be declared constant" message).

Variables of an access type and variables of an array type whose components are of an access
type (or arrays of an access type, etc.) are always considered initialized, since they are initialized
to null by the compiler. Exceptions raised by calling Raise_Exception and tasks aborted by
calling Abort_Task are properly recognized as exceptions begin raised and tasks being aborted,
respectively.

In the case of entities declared in generic packages, the rule will report on usage of the entities
for each instantiation, as well as on global usage for the generic itself. Usage for an instantiation
will include usage in the generic itself (i.e. if the generic writes to a variable, the variable will
be marked as \written" for each instantiation). Usage for the generic itself is the union of all
usages in all instantiations (i.e., if a variable from any instantiation is written to, the variable
from the generic will be marked as written). Therefore, if the rule reports that a variable in a
generic package can be declared constant, it means that no instance of this variable from any
instantiation is being written to. But bear in mind that this can be trusted only if all units from
the program are analyzed. See [limitation], page 69.

Note that usage of entities whose declaration is not processed (like, typically, elements de-
clared in standard packages like Ada.Text_IO), is not reported.

Ex:

-- No variable in package spec; check usage otherwise

Package_Variable: check usage (variable, from_spec);

Constantable : search usage (variable, not from_spec, read,

initialized, not written);

Uninitialized : check usage (variable, not from_spec, read,

not initialized, not written);

Removable : search usage (object, not from_spec, not read);

check usage (exception, not raised);

check usage (task, aborted);

check usage (protected, not called);

count usage (task);

4.50.3 Tips

Constants that are never used, exceptions that are never raised or handled, tasks that are never
called, etc. are suspicious. Moreover, some useful compiler warnings (like those about variables
that should be declared constants) are not output for variables declared in library packages, and
even in some other contexts (at least with GNAT). This rule can check these kind of things,
project wide.

Some of these checks make sense only for entities declared in package speci�cations; for
example, variables are often discouraged in package speci�cations, or need at least some extra
control. That's why it can be useful to restrict some checks to package speci�cations.

Note that an unspeci�ed parameter in a rule stands for two rules (positive and negative form
of the missing parameter). I.e.:

search usage (variable, from_spec, read, written);

is the same as:

search usage (variable, from_spec, read, written, initialized);

search usage (variable, from_spec, read, written, not initialized);

Therefore, the following example will complain on the second line that the rule has already
been given for this combination of parameters:

Chapter 4: Rules Usage 69

search usage (variable, from_spec, read, written);

search usage (variable, from_spec, read, written, not initialized);

Note that the notion of constants for this rule includes named numbers.

4.50.4 Limitations

The report of this rule is output at the end of the run, and is meaningful only for the units that
have been processed; i.e., if it reports \variable not read", it should be understood as \not read
by the units given". In order to have meaningful results, it is therefore advisable to use this rule
on the complete closure of the program.

An exception can be raised by passing its 'Identity to a procedure that will in turn call
Raise_Exception (and similarly for Abort_Task). These cases are not statically determinable,
and therefore not recognized by AdaControl. However, these cases can be identi�ed by searching
the use of the 'Identity attribute with the following rule:

check entity (all 'Identity);

Due to a weakness of the ASIS standard, usages of variables used as parameters to dispatching
calls are ignored. This limitation will be removed as soon as we �nd a way to work around this
problem, but the issue is quite di�cult!

4.51 Use Clauses

4.51.1 Syntax

<check|search|count> use_clauses [(<package name> {, <package name>})];

4.51.2 Action

This rule controls usage of use clauses, except for the ones that name one of the mentioned
packages. It is therefore possible to allow use clauses just for certain packages.

This rule can be given at most once for each of check, search and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check).

Ex:

check use_clauses (Ada.Text_IO, Ada.Wide_Text_IO);

4.52 With Clauses

4.52.1 Syntax

<check|search|count> with_clauses [(<with_kw> [, <with_kw>])];

with_kw ::= multiple_names|reduceable|inherited

4.52.2 Action

This rule controls with clauses that should be removed or moved to a better place. Each of the
keywords can be given at most once. If no keyword is given, both reduceable and inherited

are assumed.

If the keyword multiple_names is given, the rule will report on any with clause that mentions
more than one unit name.

If the keyword reduceable is given, the rule will report:

� Redundant with clauses, i.e. clauses given more than once for the same unit. This includes
the case where the same with clause is given in a speci�cation and the corresponding body,
and the case of renamings of a same unit (i.e. Text_IO and Ada.Text_IO). Note that
giving a with clause in a unit, and repeating it in a child unit (or subunit) is not considered
redundant.

Chapter 4: Rules Usage 70

� Unused with clauses, i.e. when nothing from the withed unit is referenced in the corre-
sponding unit. Use of a package name in a use clause is not considered a usage of the
package. The rule signals when a withed unit is not used in a unit, but used in one or more
of its subunits. If an unused with clause is given on a package speci�cation, the message
reminds that it migh be useful for child units.

� Moveable with clauses, i.e. when the withed unit is not used in the speci�cation, but only
in the body, and should be moved to the body.

If the keyword inherited is given, the rule will report when a child unit or a subunit uses
a unit which is not directly withed, i.e. when withed only from a parent (or enclosing) unit.
Although Ada rules imply that a with clause carries on to child units and subunits, it can be
considered better practice to ensure that every compilation unit withes directly the units it
needs.

Ex:

check with_clauses (multiple_names, reduceable);

search with_clauses (inherited);

4.52.3 Tips

A with clause can safely be removed if it is unused, and no child unit (or subunit) reports that
the unit is inherited.

Chapter 5: Examples of using AdaControl for common programming rules 71

5 Examples of using AdaControl for common
programming rules

In most projects, there are programming rules that de�ne the way a program should be written.
AdaControl performs checks, i.e. it �nds occurrences of certain kinds of constructs. In this
chapter, we give examples of commonly found programming rules, and how the corresponding
checks can be written.

5.1 Rules �les provided with AdaControl

The rules directory provides rules �les that can be sourced to enforce some commonly encoun-
tered general rules.

Identi�ers from Standard shall not be rede�ned

Use �le no_standard_entity.aru.

Identi�ers from System shall not be rede�ned

Use �le no_system_entity.aru.

Prede�ned IO packages shall not be used

Use File no_io.aru.

Standard package XXX shall not be used

File no_standard_unit.aru controls usage of all standard packages. Comment out those
that you do want to allow.

Obsolescent features shall not be used

Use �le no_obsolescent_features.aru. Not all obsolescent features are controlled, but
most of them (those that are most worth checking) are.

Features from annex X shall not be used

Use �le no_annex_X.aru.

The Ravenscar pro�le shall be enforced

Use �le ravenscar.aru.

Note that not all of the restrictions of the Ravenscar pro�le are currently controlled, but many
are, and we expect later releases of AdaControl to increase the number of controlled features. In
some cases (like \Detect Blocking"), AdaControl does a better job than the pro�le, since it can
detect statically situations that the pro�le only requires to be detected at run-time. The rule �le
is also slightly more restrictive than the pro�le; for example, the restriction \no task allocation"
only disallows task allocators, while this rule �le controls the declaration of access types on tasks.

5.2 Automatically checkable rules

Below are examples of rules that can be directly checked by AdaControl.

Goto statement shall not be used

check statements (goto);

Short circuit forms should be preferred over corresponding logical operators

Chapter 5: Examples of using AdaControl for common programming rules 72

Use_Short_Circuit: search expressions (and, or);

All loops that contain exit statements must be named, and the name must be given in the exit
statement

check statements (unnamed_loop_exited);

check statements (unnamed_exit);

All type names must start with \T "

check naming_convention (type, "^T_");

All program units must repeat their name after the \end"

check style (no_closing_name);

Pragma Suppress is not allowed

check pragmas (suppress);

Ada tasking must not be used

check declarations (task);

\=" and \/=" shall not be used between real types

check real_operators;

All tasks must provide an exception handler that calls \Failure" in the case of an unhandled
exception

check exception_propagation (task);

check silent_exceptions (failure);

Unchecked Conversion shall not be used

check entities (ada.unchecked_conversion);

No global variable shall be declared in the visible part of a package speci�cation

check usage (variable, from_spec);

Prede�ned numeric types of the language shall not be used

check entities (standard.Integer,

standard.short_integer,

standard.long_integer,

standard.Float,

standard.short_float,

standard.long_float);

Access to subprograms shall not be used

check declarations (access_to_sp);

Abort statements shall not be used

Chapter 5: Examples of using AdaControl for common programming rules 73

check statements (abort);

There shall be only one instantiation of Ada.Numerics.Generic Elementary Functions for each

oating point type

-- Put a --##RULE LINE OFF GEF

-- for the one which is allowed

GEF: check Instantiations (Ada.Numerics.Generic_Elementary_Functions);

A local item shall not hide an outer one with the same name

check Local_Hiding;

There shall be no IOs in exception handlers

check entity_inside_exception (ada.Text_IO.put, ada.Text_IO.put_line,

ada.Text_IO.get, ada.Text_IO.get_line);

Note that this checks for all overloaded procedures, but only those dealing with characters
and strings (those de�ned directly within Ada.Text IO). If the names \get" and \put" are not
used for anything else than IOs, a more general form can be given as:

check entity_inside_exception (all get, all put,

all get_line, all put_line);

This will check that no entity with the corresponding names appear in exception handlers.

Exceptions shall not be used

No_Exception: check declarations (exception, handlers);

No_Exception: check statements (raise);

No_Exception: check entities (Ada.Exceptions);

This will check that no exception is declared, no exception handler is provided, and no
exception is raised, not even through the services of the package Ada.Exceptions.

No procedure exported to C shall propagate exceptions

check exception_propagation (interface, C);

There shall be no Unchecked Conversion to or from Address

check instantiations (ada.unchecked_conversion, system.address);

check instantiations (ada.unchecked_conversion, <>, system.address);

There shall be no use clause except for Text IO

check use_clauses(ada.text_IO);

Use explicit list of values in case statements rather than \when others"if the \when others"
would cover less than 10 values

check Case_Statement(min_others_range, 10);

Exceptions shall not be handled except by main program

check declaration (handlers)

This check will be disabled for the exception handler of the main program.

Each unit has a header starting with a �xed format, and must contain at least 10 lines of
comments

Chapter 5: Examples of using AdaControl for common programming rules 74

check header_comments (model, "header.txt");

check header_comments (minimum, 10);

The �le header.txt contains the required header (as regexps), like:

^--*{50}$

^-- This is a header$

5.3 Rules that need manual inspection

Below are examples of rules that require manual inspection, but where AdaControl can be used
to identify suspicious areas.

All usages of the 'ADDRESS attribute shall be justi�ed and documented

search entities (all 'address);

Specifying an address for a variable shall be restricted to hardware interfacing

search representation_clauses(address);

There shall be no memory leakage

search Allocators;

This rule identi�es all allocations, and thus can be used to check that all allocated elements
are properly deallocated.

Chapter 6: Non upward-compatible changes 75

6 Non upward-compatible changes

This chapter is intended to users of a previous version of AdaControl, who want to migrate
rule �les to the latest version. Although we understand the burden of non upward-compatible
changes, we consider that making AdaControl more powerful and easier to use is sometimes more
important than strict compatibility. Moreover, in most cases the changes are very straightfor-
ward and can be done with scripts.

6.1 Migrating from 1.5r24

6.1.1 Declarations

The subrule \Formal In Out" has been renamed as \In Out Generic Parameter", for consis-
tency with the new \In Out Parameter" subrule.

The subrules \renames" and \not operator renames" have been renamed to \renaming" and
\not operator renaming".

6.1.2 Naming Convention

The <Location> keyword is placed before the <Filter Kind> keyword instead of before the <Pat-
tern>, which looks more natural. The \Any" keyword has been removed, since omitting the
<Location> keyword has the same e�ect. Change:

check naming_convention (variable, global "^G_");

check naming_convention (package, any "^Pack_");

to:

check naming_convention (global variable, "^G_");

check naming_convention (package, "^Pack_");

6.1.3 Non Static Constraint

This rule is now called Non Static, since it is no more restricted to constraints. The pa-
rameters \index" and \discriminant" have been changed to \index constraint" and \discrim-
inant constraint", respectively. Change:

check non_static_constraint (index, discriminant);

to:

check non_static (index_constraint, discriminant_constraint);

6.1.4 Positional Parameters

This rule has been renamed to Insufficient_Parameters, since it does no more handle the
\maximum" subrule. Controlling positional parameters according to their number is now done
by the rule style (positional_association). Change:

check positional_parameters (maximum, 3);

check positional_parameters (insufficient, 2, Boolean);

to:

check style (positional_association, call, 3);

check insufficient_parameters (2, Boolean);

6.1.5 Real Operator

This rule is no more a rule of its own, it is a subrule of the (new) rule Expressions, whose name
is Real Equality. Change:

check Real_Operators;

to:

Chapter 6: Non upward-compatible changes 76

check expressions (Real_Equality);

6.1.6 Style

The name of the subrule \casing" has been changed to \casing identi�er" since the casing of
attributes and pragmas can now also be checked. The casing style is no more optional.

The name of the subrule \literal" has been changed to \numeric literal" (since characters
and strings are also literals, but are not handled by this subrule).

The subrule \exposed literal" now requires an extra parameter to tell whether it applies to
integer literals, real literals, character literals or string literals. Allowed values are provided after
this parameter, and must of course be of the appropriate type. In short, if you had:

check style (exposed_literal, 0, 1, 0.0, 1.0);

you must change it to:

check style (exposed_literal, integer, 0, 1)

check style (exposed_literal, real, 0.0, 1.0);

The \aggregate" parameter of the subrule \positional association" has been split into \ar-
ray aggregate" and \record aggregate". For example, change:

check style (positional_association, aggregate);

into:

check style (positional_association, record_aggregate, array_aggregate);

6.2 Migrating from 1.4r20

6.2.1 GPS integration

The XML �le used to describe AdaControl features to GPS used to be called adactl.xml. It is
now called zadactl.xml, since GPS processes its initialization �les in alphabetical order. This
avoids shu�ing the menus when AdaControl support is activated.

Make sure to remove the old adactl.xml �le from the GPS plug-ins directory before installing
the new version.

6.2.2 Declarations

The parameters \access" and \access subprogram" have been changed to \access type" and
\access subprogram type", for consistency with the new parameters.

6.2.3 Header Comments

A keyword has been added to specify the required number of comment lines. Change:

check Header_Comments (10);

to:

check Header_Comments (minimum, 10);

6.2.4 No Closing Name

This rule is now part of the \style" rule. Change:

check|search|count No_Closing_Name;

to:

check|search|count Style (No_Closing_Name);

Chapter 6: Non upward-compatible changes 77

6.2.5 Speci�cation Objects

This rule is now part of the \usage" rule. Change:

check|search|count Specification_Objects (<parameters>);

to:

check|search|count Usage (Object, From_Spec, <parameters>);

6.2.6 Statement

Name changed from \statement" to \statements" (added an 's'), to be consistent with other
rules.

6.2.7 When Others Null

This rule is now part of the \statements" rule. Change:

check|search|count When_Others_Null (case);

check|search|count When_Others_Null (exception);

to:

check|search|count Statements (case_others_null);

check|search|count Statements (exception_others_null);

Chapter 7: Syntax of regular expressions 78

7 Syntax of regular expressions

The following syntax gives the complete de�nition of regular expressions, as used by several rules.
It is taken from the speci�cation of the package gnat.regpat, where additional information is
available.

regexp ::= expr

::= ^ expr -- anchor at the beginning of string

::= expr $ -- anchor at the end of string

expr ::= term

::= term | term -- alternation (term or term ...)

term ::= item

::= item item ... -- concatenation (item then item)

item ::= elmt -- match elmt

::= elmt * -- zero or more elmt's

::= elmt + -- one or more elmt's

::= elmt ? -- matches elmt or nothing

::= elmt *? -- zero or more times, minimum number

::= elmt +? -- one or more times, minimum number

::= elmt ?? -- zero or one time, minimum number

::= elmt { num } -- matches elmt exactly num times

::= elmt { num , } -- matches elmt at least num times

::= elmt { num , num2 } -- matches between num and num2 times

::= elmt { num }? -- matches elmt exactly num times

::= elmt { num , }? -- matches elmt at least num times

non-greedy version

::= elmt { num , num2 }? -- matches between num and num2 times

non-greedy version

elmt ::= nchr -- matches given character

::= [range range ...] -- matches any character listed

::= [^ range range ...] -- matches any character not listed

::= . -- matches any single character

-- except newlines

::= (expr) -- parens used for grouping

::= \ num -- reference to num-th parenthesis

range ::= char - char -- matches chars in given range

::= nchr

::= [: posix :] -- any character in the POSIX range

::= [:^ posix :] -- not in the POSIX range

posix ::= alnum -- alphanumeric characters

::= alpha -- alphabetic characters

::= ascii -- ascii characters (0 .. 127)

::= cntrl -- control chars (0..31, 127..159)

::= digit -- digits ('0' .. '9')

::= graph -- graphic chars (32..126, 160..255)

::= lower -- lower case characters

::= print -- printable characters (32..127)

Chapter 7: Syntax of regular expressions 79

::= punct -- printable, except alphanumeric

::= space -- space characters

::= upper -- upper case characters

::= word -- alphanumeric characters

::= xdigit -- hexadecimal chars (0..9, a..f)

char ::= any character, including special characters

ASCII.NUL is not supported.

nchr ::= any character except \()[].*+?^ or \char to match char

\n means a newline (ASCII.LF)

\t means a tab (ASCII.HT)

\r means a return (ASCII.CR)

\b matches the empty string at the beginning or end of a

word. A word is defined as a set of alphanumerical

characters (see \w below).

\B matches the empty string only when *not* at the

beginning or end of a word.

\d matches any digit character ([0-9])

\D matches any non digit character ([^0-9])

\s matches any white space character. This is equivalent

to [\t\n\r\f\v] (tab, form-feed, vertical-tab,...

\S matches any non-white space character.

\w matches any alphanumeric character or underscore.

This include accented letters, as defined in the

package Ada.Characters.Handling.

\W matches any non-alphanumeric character.

\A match the empty string only at the beginning of the

string, whatever flags are used for Compile (the

behavior of ^ can change, see Regexp_Flags below).

\G match the empty string only at the end of the

string, whatever flags are used for Compile (the

behavior of $ can change, see Regexp_Flags below).

... ::= is used to indication repetition (one or more terms)

Embedded newlines are not matched by the ^ operator. It is possible to retrieve the substring
matched a parenthesis expression. Although the depth of parenthesis is not limited in the regexp,
only the �rst 9 substrings can be retrieved.

The operators '*', '+', '?' and '{}' always match the longest possible substring. They all have
a non-greedy version (with an extra ? after the operator), which matches the shortest possible
substring.

For instance:

regexp="<.*>" string="<h1>title</h1>" matches="<h1>title</h1>"

regexp="<.*?>" string="<h1>title</h1>" matches="<h1>"

'{' and '}' are only considered as special characters if they appear in a substring that looks
exactly like '{n}', '{n,m}' or '{n,}', where n and m are digits. No space is allowed. In other
contexts, the curly braces will simply be treated as normal characters.

Note that if you compiled AdaControl with the String_Matching_Portable package, only
basic wildcards are available, i.e. only *" and \?" are supported, where *" matches any string
of character and \?" matches a single character.

	Introduction
	Installation
	Prerequisites
	Building AdaControl
	Build with project file
	Build with Makefile
	Installing support form GPS

	Testing AdaControl
	Customizing AdaControl

	Program Usage
	Running AdaControl from the command line
	Running AdaControl from GPS
	The AdaControl menu and button
	AdaControl switches
	AdaControl preferences
	AdaControl language
	AdaControl help

	Rules syntax
	Rule types and report messages
	Parameters
	Specifying an Ada entity name
	Overloaded names
	Enumeration literals
	Operators
	Attributes
	Anonymous constructs
	Record and protected types components
	Formals of access to subprogram types

	Multiple rules

	Commands
	Go command
	Quit command
	Message command
	Help command
	Clear command
	Set command
	Source command
	Inhibit command
	Example of commands

	Command line options and parameters
	Getting help
	Checking rules syntax
	Input units
	Specifying rules
	Output file
	Output format
	Interactive mode
	Local deactivation ignoring
	Verbose and debug mode
	Treatment of warnings
	Exit on error
	Project files
	Emacs style project files
	GPS project files

	ASIS options

	Return codes
	Disabling rules
	Block disabling
	Line disabling

	Helpful utilities
	pfni
	Adactl -D
	makepat.sed
	unrepr.sed

	Optimizing AdaControl
	Tree files and the ASIS context
	Generating tree files manually
	Choosing an appropriate combination of options

	In case of trouble

	Rules Usage
	Abnormal_Function_Return
	Syntax
	Action
	tip

	Allocators
	Syntax
	Action
	Tips

	Array_Declarations
	Syntax
	Action

	Barrier_Expressions
	Syntax
	Action
	Tips

	Case_Statement
	Syntax
	Action
	Limitations

	Control_Characters
	Syntax
	Action

	Declarations
	Syntax
	action
	Tips
	Limitation

	Default_Parameter
	Syntax
	Action
	Limitations

	Directly_Accessed_Globals
	Syntax
	Action
	Tips
	Limitations

	Entities
	Syntax
	Action
	Tips
	Limitation

	Entity_Inside_Exception
	Syntax
	Action

	Exception_Propagation
	Syntax
	Action
	Tips
	Limitations

	Expressions
	Syntax
	Action

	Global_References
	Syntax
	Action
	Tips

	Header_Comments
	Syntax
	Action
	Tips

	If_For_Case
	Syntax
	Action

	Instantiations
	Syntax
	Action
	Tips

	Insufficient_Parameters
	Syntax
	Action
	Tips

	Local_Hiding
	Syntax
	Action

	Local_Instantiation
	Syntax
	Action

	Max_Blank_Lines
	Syntax
	Action

	Max_Call_Depth
	Syntax
	Action
	Tip
	Limitations

	Max_Line_Length
	Syntax
	Action

	Max_Nesting
	Syntax
	Action

	Max_Parameters
	Syntax
	Action
	Tips

	Max_Statement_Nesting
	Syntax
	Action

	Movable_Accept_Statements
	Syntax
	Action
	Tips

	Naming_Convention
	Syntax
	Action
	Tips
	Limitations

	No_Safe_Initialization
	Syntax
	Action
	Limitation

	Non_Static
	Syntax
	Action

	Not_Elaboration_Calls
	Syntax
	Action
	Limitations

	Parameter_Aliasing
	Syntax
	Action
	Limitation

	Other_Dependencies
	Syntax
	Action

	Potentially_Blocking_Operations
	Syntax
	Action
	Limitation
	Tips

	Pragmas
	Syntax
	Action
	Tips

	Reduceable_Scope
	Syntax
	Action

	Representation_Clauses
	Syntax
	Action

	Return_Type
	Syntax
	Action
	Limitations

	Side_Effect_Parameters
	Syntax
	Action
	Limitation

	Silent_Exceptions
	Syntax
	Action
	Limitations

	Simplifiable_Expressions
	Syntax
	Action
	Tips

	Special_Comments
	Syntax
	Action
	Tips
	Limitations

	Statements
	Syntax
	Action
	Tips

	Style
	Syntax
	Action
	Tips
	Limitations

	Terminating_Tasks
	Syntax
	Action
	Tips

	Uncheckable
	Syntax
	Action
	Tips
	Limitation

	Unnecessary_Use_Clause
	Syntax
	Action
	Limitations

	Unsafe_Paired_Calls
	Syntax
	Action
	Tips
	Limitation

	Unsafe_Unchecked_Conversion
	Syntax
	Action
	limitation

	Usage
	Syntax
	action
	Tips
	Limitations

	Use_Clauses
	Syntax
	Action

	With_Clauses
	Syntax
	Action
	Tips

	Examples of using AdaControl for common programming rules
	Rules files provided with AdaControl
	Automatically checkable rules
	Rules that need manual inspection

	Non upward-compatible changes
	Migrating from 1.5r24
	Declarations
	Naming_Convention
	Non_Static_Constraint
	Positional_Parameters
	Real_Operator
	Style

	Migrating from 1.4r20
	GPS integration
	Declarations
	Header_Comments
	No_Closing_Name
	Specification_Objects
	Statement
	When_Others_Null

	Syntax of regular expressions

