Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13565 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (95 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (211 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (305 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (352 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (297 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (183 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2869 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (287 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)

S

S [constructor, in Coq.Init.Datatypes]
S [module, in Coq.FSets.FMapInterface]
S [module, in Coq.FSets.FSetInterface]
same_relation [definition, in Coq.Sets.Relations_1]
same_relation [definition, in Coq.Relations.Relation_Definitions]
same_relation_is_equivalence [lemma, in Coq.Sets.Relations_1_facts]
Same_set [definition, in Coq.Sets.Ensembles]
sb [definition, in Coq.Logic.Hurkens]
scal_sum [lemma, in Coq.Reals.PartSum]
Sdep [module, in Coq.FSets.FSetInterface]
Sdep.add [axiom, in Coq.FSets.FSetInterface]
Sdep.Add [definition, in Coq.FSets.FSetInterface]
Sdep.cardinal [axiom, in Coq.FSets.FSetInterface]
Sdep.choose [axiom, in Coq.FSets.FSetInterface]
Sdep.choose_equal [axiom, in Coq.FSets.FSetInterface]
Sdep.compare [axiom, in Coq.FSets.FSetInterface]
Sdep.diff [axiom, in Coq.FSets.FSetInterface]
Sdep.elements [axiom, in Coq.FSets.FSetInterface]
Sdep.elt [definition, in Coq.FSets.FSetInterface]
Sdep.empty [axiom, in Coq.FSets.FSetInterface]
Sdep.Empty [definition, in Coq.FSets.FSetInterface]
Sdep.eq [definition, in Coq.FSets.FSetInterface]
Sdep.equal [axiom, in Coq.FSets.FSetInterface]
Sdep.Equal [definition, in Coq.FSets.FSetInterface]
Sdep.eq_In [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_refl [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_sym [axiom, in Coq.FSets.FSetInterface]
Sdep.eq_trans [axiom, in Coq.FSets.FSetInterface]
Sdep.Exists [definition, in Coq.FSets.FSetInterface]
Sdep.exists_ [axiom, in Coq.FSets.FSetInterface]
Sdep.filter [axiom, in Coq.FSets.FSetInterface]
Sdep.fold [axiom, in Coq.FSets.FSetInterface]
Sdep.for_all [axiom, in Coq.FSets.FSetInterface]
Sdep.For_all [definition, in Coq.FSets.FSetInterface]
Sdep.In [axiom, in Coq.FSets.FSetInterface]
Sdep.inter [axiom, in Coq.FSets.FSetInterface]
Sdep.is_empty [axiom, in Coq.FSets.FSetInterface]
Sdep.lt [axiom, in Coq.FSets.FSetInterface]
Sdep.lt_not_eq [axiom, in Coq.FSets.FSetInterface]
Sdep.lt_trans [axiom, in Coq.FSets.FSetInterface]
Sdep.max_elt [axiom, in Coq.FSets.FSetInterface]
Sdep.mem [axiom, in Coq.FSets.FSetInterface]
Sdep.min_elt [axiom, in Coq.FSets.FSetInterface]
Sdep.partition [axiom, in Coq.FSets.FSetInterface]
Sdep.remove [axiom, in Coq.FSets.FSetInterface]
Sdep.singleton [axiom, in Coq.FSets.FSetInterface]
Sdep.Subset [definition, in Coq.FSets.FSetInterface]
Sdep.subset [axiom, in Coq.FSets.FSetInterface]
Sdep.t [axiom, in Coq.FSets.FSetInterface]
Sdep.union [axiom, in Coq.FSets.FSetInterface]
seq [definition, in Coq.Sets.Uniset]
seq [definition, in Coq.Lists.List]
SeqProp [library]
SeqSeries [library]
sequence [section, in Coq.Reals.Rseries]
sequence.Un [variable, in Coq.Reals.Rseries]
sequence_lb [definition, in Coq.Reals.SeqProp]
sequence_majorant [abbreviation, in Coq.Reals.SeqProp]
sequence_minorant [abbreviation, in Coq.Reals.SeqProp]
sequence_ub [definition, in Coq.Reals.SeqProp]
seq_congr [lemma, in Coq.Sets.Uniset]
seq_left [lemma, in Coq.Sets.Uniset]
seq_length [lemma, in Coq.Lists.List]
seq_nth [lemma, in Coq.Lists.List]
Seq_refl [definition, in Coq.Setoids.Setoid]
seq_refl [lemma, in Coq.Sets.Uniset]
seq_right [lemma, in Coq.Sets.Uniset]
seq_shift [lemma, in Coq.Lists.List]
Seq_sym [definition, in Coq.Setoids.Setoid]
seq_sym [lemma, in Coq.Sets.Uniset]
seq_trans [lemma, in Coq.Sets.Uniset]
Seq_trans [definition, in Coq.Setoids.Setoid]
set [definition, in Coq.Lists.ListSet]
setcover_intro [lemma, in Coq.Sets.Powerset_facts]
setcover_inv [lemma, in Coq.Sets.Powerset_Classical_facts]
SetIncl [section, in Coq.Lists.List]
SetIncl.A [variable, in Coq.Lists.List]
SetIsType [library]
Setminus [definition, in Coq.Sets.Ensembles]
Setminus_intro [lemma, in Coq.Sets.Constructive_sets]
Setoid [record, in Coq.Classes.SetoidClass]
Setoid [library]
SetoidAxioms [library]
SetoidClass [library]
SetoidDec [library]
setoideq_eq [axiom, in Coq.Classes.SetoidAxioms]
SetoidList [library]
SetoidRelation [record, in Coq.Classes.SetoidTactics]
SetoidTactics [library]
setoid_decidable [projection, in Coq.Classes.EquivDec]
setoid_decidable [constructor, in Coq.Classes.EquivDec]
setoid_decidable [projection, in Coq.Classes.SetoidDec]
setoid_decidable [constructor, in Coq.Classes.SetoidDec]
setoid_equiv [projection, in Coq.Classes.SetoidClass]
setoid_morphism [instance, in Coq.Classes.SetoidClass]
setoid_partial_app_morphism [instance, in Coq.Classes.SetoidClass]
setoid_refl [instance, in Coq.Classes.SetoidClass]
setoid_refl [definition, in Coq.Classes.SetoidClass]
setoid_sym [definition, in Coq.Classes.SetoidClass]
setoid_sym [instance, in Coq.Classes.SetoidClass]
Setoid_Theory [definition, in Coq.Setoids.Setoid]
setoid_trans [instance, in Coq.Classes.SetoidClass]
setoid_trans [definition, in Coq.Classes.SetoidClass]
Sets_as_an_algebra [section, in Coq.Sets.Powerset_Classical_facts]
Sets_as_an_algebra [section, in Coq.Sets.Powerset_facts]
Sets_as_an_algebra.U [variable, in Coq.Sets.Powerset_Classical_facts]
Sets_as_an_algebra.U [variable, in Coq.Sets.Powerset_facts]
set_add [definition, in Coq.Lists.ListSet]
set_add_elim [lemma, in Coq.Lists.ListSet]
set_add_elim2 [lemma, in Coq.Lists.ListSet]
set_add_intro [lemma, in Coq.Lists.ListSet]
set_add_intro1 [lemma, in Coq.Lists.ListSet]
set_add_intro2 [lemma, in Coq.Lists.ListSet]
set_add_not_empty [lemma, in Coq.Lists.ListSet]
set_diff [definition, in Coq.Lists.ListSet]
set_diff_elim1 [lemma, in Coq.Lists.ListSet]
set_diff_elim2 [lemma, in Coq.Lists.ListSet]
set_diff_intro [lemma, in Coq.Lists.ListSet]
set_diff_trivial [lemma, in Coq.Lists.ListSet]
set_fold_left [definition, in Coq.Lists.ListSet]
set_fold_right [definition, in Coq.Lists.ListSet]
set_In [definition, in Coq.Lists.ListSet]
set_inter [definition, in Coq.Lists.ListSet]
set_inter_elim [lemma, in Coq.Lists.ListSet]
set_inter_elim1 [lemma, in Coq.Lists.ListSet]
set_inter_elim2 [lemma, in Coq.Lists.ListSet]
set_inter_intro [lemma, in Coq.Lists.ListSet]
set_In_dec [lemma, in Coq.Lists.ListSet]
set_map [definition, in Coq.Lists.ListSet]
set_mem [definition, in Coq.Lists.ListSet]
set_mem_complete1 [lemma, in Coq.Lists.ListSet]
set_mem_complete2 [lemma, in Coq.Lists.ListSet]
set_mem_correct1 [lemma, in Coq.Lists.ListSet]
set_mem_correct2 [lemma, in Coq.Lists.ListSet]
set_mem_ind [lemma, in Coq.Lists.ListSet]
set_mem_ind2 [lemma, in Coq.Lists.ListSet]
set_power [definition, in Coq.Lists.ListSet]
set_prod [definition, in Coq.Lists.ListSet]
set_remove [definition, in Coq.Lists.ListSet]
set_union [definition, in Coq.Lists.ListSet]
set_union_elim [lemma, in Coq.Lists.ListSet]
set_union_emptyL [lemma, in Coq.Lists.ListSet]
set_union_emptyR [lemma, in Coq.Lists.ListSet]
set_union_intro [lemma, in Coq.Lists.ListSet]
set_union_intro1 [lemma, in Coq.Lists.ListSet]
set_union_intro2 [lemma, in Coq.Lists.ListSet]
SFL [definition, in Coq.Reals.PSeries_reg]
SFL_continuity [lemma, in Coq.Reals.PSeries_reg]
SFL_continuity_pt [lemma, in Coq.Reals.PSeries_reg]
Sfun [module, in Coq.FSets.FSetInterface]
Sfun [module, in Coq.FSets.FMapInterface]
Sfun.choose_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.compare [axiom, in Coq.FSets.FSetInterface]
Sfun.elements_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.elements_3 [axiom, in Coq.FSets.FMapInterface]
Sfun.elt [section, in Coq.FSets.FMapInterface]
Sfun.elt.elt [variable, in Coq.FSets.FMapInterface]
Sfun.lt [axiom, in Coq.FSets.FSetInterface]
Sfun.lt_key [definition, in Coq.FSets.FMapInterface]
Sfun.lt_not_eq [axiom, in Coq.FSets.FSetInterface]
Sfun.lt_trans [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_1 [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_2 [axiom, in Coq.FSets.FSetInterface]
Sfun.max_elt_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_1 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_2 [axiom, in Coq.FSets.FSetInterface]
Sfun.min_elt_3 [axiom, in Coq.FSets.FSetInterface]
Sfun.Spec [section, in Coq.FSets.FSetInterface]
Sfun.Spec.s [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.s' [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.s'' [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.x [variable, in Coq.FSets.FSetInterface]
Sfun.Spec.y [variable, in Coq.FSets.FSetInterface]
shift [definition, in Coq.ZArith.Zpower]
shift [definition, in Coq.Strings.Ascii]
shiftl [definition, in Coq.Numbers.Cyclic.Int31.Int31]
shiftr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
shift_nat [definition, in Coq.ZArith.Zpower]
shift_nat_correct [lemma, in Coq.ZArith.Zpower]
shift_nat_plus [lemma, in Coq.ZArith.Zpower]
shift_pos [definition, in Coq.ZArith.Zpower]
shift_pos_correct [lemma, in Coq.ZArith.Zpower]
shift_pos_nat [lemma, in Coq.ZArith.Zpower]
shift_unshift_mod [lemma, in Coq.Numbers.BigNumPrelude]
shift_unshift_mod_2 [lemma, in Coq.Numbers.BigNumPrelude]
sig [inductive, in Coq.Init.Specif]
Sigma [section, in Coq.Reals.Rsigma]
sigma [definition, in Coq.Reals.Rsigma]
Sigma.f [variable, in Coq.Reals.Rsigma]
sigma_diff [lemma, in Coq.Reals.Rsigma]
sigma_diff_neg [lemma, in Coq.Reals.Rsigma]
sigma_eq_arg [lemma, in Coq.Reals.Rsigma]
sigma_first [lemma, in Coq.Reals.Rsigma]
sigma_last [lemma, in Coq.Reals.Rsigma]
sigma_split [lemma, in Coq.Reals.Rsigma]
sigS [abbreviation, in Coq.Init.Specif]
sigS2 [abbreviation, in Coq.Init.Specif]
sigS2_ind [abbreviation, in Coq.Init.Specif]
sigS2_rec [abbreviation, in Coq.Init.Specif]
sigS2_rect [abbreviation, in Coq.Init.Specif]
sigS_ind [abbreviation, in Coq.Init.Specif]
sigS_rec [abbreviation, in Coq.Init.Specif]
sigS_rect [abbreviation, in Coq.Init.Specif]
sigT [inductive, in Coq.Init.Specif]
sigT2 [inductive, in Coq.Init.Specif]
sigT_of_sig [lemma, in Coq.Init.Specif]
sig2 [inductive, in Coq.Init.Specif]
sig_forall_dec [lemma, in Coq.Reals.Rlogic]
sig_of_sigT [lemma, in Coq.Init.Specif]
simplification_existT1 [lemma, in Coq.Program.Equality]
simplification_existT2 [lemma, in Coq.Program.Equality]
simplification_heq [lemma, in Coq.Program.Equality]
simplification_K [lemma, in Coq.Program.Equality]
Simplify_add [lemma, in Coq.Sets.Powerset_Classical_facts]
SimplOp [section, in Coq.Numbers.Natural.BigN.Nbasic]
SimplOp.w [variable, in Coq.Numbers.Natural.BigN.Nbasic]
simpl_cos_n [lemma, in Coq.Reals.Rtrigo_def]
simpl_fact [lemma, in Coq.Reals.Rfunctions]
simpl_sin_n [lemma, in Coq.Reals.Rtrigo_def]
sin [definition, in Coq.Reals.Rtrigo_def]
SIN [lemma, in Coq.Reals.Rtrigo]
sincl_add_x [lemma, in Coq.Sets.Powerset_Classical_facts]
sind [definition, in Coq.Reals.Rtrigo_calc]
Singleton [definition, in Coq.Sets.Uniset]
Singleton [inductive, in Coq.Sets.Ensembles]
SingletonBag [definition, in Coq.Sets.Multiset]
singletonBag [definition, in Coq.Sorting.Heap]
singletonBag [definition, in Coq.Sorting.Permutation]
singletonBag [definition, in Coq.Sorting.Sorting]
Singleton_atomic [lemma, in Coq.Sets.Powerset_Classical_facts]
singleton_choice [lemma, in Coq.Logic.ClassicalChoice]
Singleton_intro [lemma, in Coq.Sets.Constructive_sets]
Singleton_inv [lemma, in Coq.Sets.Constructive_sets]
Singleton_is_finite [lemma, in Coq.Sets.Finite_sets_facts]
single_limit [lemma, in Coq.Reals.Rlimit]
single_z_r_R1 [lemma, in Coq.Reals.RIneq]
singlx [lemma, in Coq.Sets.Powerset_facts]
sinh [definition, in Coq.Reals.Rtrigo_def]
sinh_0 [lemma, in Coq.Reals.Rtrigo_def]
sin2 [lemma, in Coq.Reals.Rtrigo]
sin2_cos2 [lemma, in Coq.Reals.Rtrigo]
sin3PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_antisym [lemma, in Coq.Reals.Rtrigo_def]
sin_approx [definition, in Coq.Reals.Rtrigo_alt]
sin_bound [lemma, in Coq.Reals.Rtrigo_alt]
SIN_bound [lemma, in Coq.Reals.Rtrigo]
sin_cos [lemma, in Coq.Reals.Rtrigo]
sin_cos5PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_cos_PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_decreasing_0 [lemma, in Coq.Reals.Rtrigo]
sin_decreasing_1 [lemma, in Coq.Reals.Rtrigo]
sin_decr_0 [lemma, in Coq.Reals.Rtrigo]
sin_decr_1 [lemma, in Coq.Reals.Rtrigo]
sin_eq_O_2PI_0 [lemma, in Coq.Reals.Rtrigo]
sin_eq_O_2PI_1 [lemma, in Coq.Reals.Rtrigo]
sin_eq_0_0 [lemma, in Coq.Reals.Rtrigo]
sin_eq_0_1 [lemma, in Coq.Reals.Rtrigo]
sin_ge_0 [lemma, in Coq.Reals.Rtrigo]
sin_gt_0 [lemma, in Coq.Reals.Rtrigo]
sin_in [definition, in Coq.Reals.Rtrigo_def]
sin_increasing_0 [lemma, in Coq.Reals.Rtrigo]
sin_increasing_1 [lemma, in Coq.Reals.Rtrigo]
sin_incr_0 [lemma, in Coq.Reals.Rtrigo]
sin_incr_1 [lemma, in Coq.Reals.Rtrigo]
sin_lb [definition, in Coq.Reals.Rtrigo]
sin_lb_ge_0 [lemma, in Coq.Reals.Rtrigo_calc]
sin_lb_gt_0 [lemma, in Coq.Reals.Rtrigo]
sin_le_0 [lemma, in Coq.Reals.Rtrigo]
sin_lt_0 [lemma, in Coq.Reals.Rtrigo]
sin_lt_0_var [lemma, in Coq.Reals.Rtrigo]
sin_minus [lemma, in Coq.Reals.Rtrigo]
sin_n [definition, in Coq.Reals.Rtrigo_def]
sin_neg [lemma, in Coq.Reals.Rtrigo]
sin_no_R0 [lemma, in Coq.Reals.Rtrigo_def]
sin_period [lemma, in Coq.Reals.Rtrigo]
sin_PI [lemma, in Coq.Reals.Rtrigo]
sin_PI2 [axiom, in Coq.Reals.Rtrigo]
sin_PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI3_cos_PI6 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI4 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI6 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI6_cos_PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_PI_x [lemma, in Coq.Reals.Rtrigo]
sin_plus [lemma, in Coq.Reals.Rtrigo]
sin_shift [lemma, in Coq.Reals.Rtrigo]
sin_term [definition, in Coq.Reals.Rtrigo_alt]
sin_ub [definition, in Coq.Reals.Rtrigo]
sin_0 [lemma, in Coq.Reals.Rtrigo_def]
sin_2a [lemma, in Coq.Reals.Rtrigo]
sin_2PI [lemma, in Coq.Reals.Rtrigo]
sin_2PI3 [lemma, in Coq.Reals.Rtrigo_calc]
sin_3PI2 [lemma, in Coq.Reals.Rtrigo_calc]
sin_5PI4 [lemma, in Coq.Reals.Rtrigo_calc]
size [definition, in Coq.Numbers.Cyclic.Int31.Int31]
skipn [definition, in Coq.Lists.List]
SmallDrinker'sParadox [definition, in Coq.Logic.ChoiceFacts]
small_drinkers'_paradox [lemma, in Coq.Logic.Epsilon]
snd [definition, in Coq.Init.Datatypes]
sndT [abbreviation, in Coq.Init.Datatypes]
sneakl [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sneakl_shiftr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sneakr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sneakr_shiftl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
solution_left [lemma, in Coq.Program.Equality]
solution_right [lemma, in Coq.Program.Equality]
sol_x1 [definition, in Coq.Reals.R_sqrt]
sol_x2 [definition, in Coq.Reals.R_sqrt]
Some [constructor, in Coq.Init.Datatypes]
Sord [module, in Coq.FSets.FMapInterface]
Sord.cmp [definition, in Coq.FSets.FMapInterface]
Sord.compare [axiom, in Coq.FSets.FMapInterface]
Sord.eq [axiom, in Coq.FSets.FMapInterface]
Sord.eq_refl [axiom, in Coq.FSets.FMapInterface]
Sord.eq_sym [axiom, in Coq.FSets.FMapInterface]
Sord.eq_trans [axiom, in Coq.FSets.FMapInterface]
Sord.eq_1 [axiom, in Coq.FSets.FMapInterface]
Sord.eq_2 [axiom, in Coq.FSets.FMapInterface]
Sord.lt [axiom, in Coq.FSets.FMapInterface]
Sord.lt_not_eq [axiom, in Coq.FSets.FMapInterface]
Sord.lt_trans [axiom, in Coq.FSets.FMapInterface]
Sord.t [definition, in Coq.FSets.FMapInterface]
sort [inductive, in Coq.Sorting.Sorting]
SortA [abbreviation, in Coq.Lists.SetoidList]
SortA_app [lemma, in Coq.Lists.SetoidList]
SortA_equivlistA_eqlistA [lemma, in Coq.Lists.SetoidList]
SortA_InfA_InA [lemma, in Coq.Lists.SetoidList]
SortA_NoDupA [lemma, in Coq.Lists.SetoidList]
Sorting [library]
sort_inv [lemma, in Coq.Sorting.Sorting]
sort_rec [lemma, in Coq.Sorting.Sorting]
sort_rect [lemma, in Coq.Sorting.Sorting]
SP [definition, in Coq.Reals.PartSum]
Space [definition, in Coq.Strings.Ascii]
Specif [library]
Specific_orders [section, in Coq.Sets.Cpo]
Specific_orders.U [variable, in Coq.Sets.Cpo]
spec_add [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add2 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_add_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_carry_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_mul_div [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_mul_div [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_mul_div [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_mul_divp [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_Bm1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_Bm1 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_Bm1 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_compare [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_compare [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_compare [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_compare0_mn [lemma, in Coq.Numbers.Natural.BigN.Nbasic]
spec_compare_mn_1 [lemma, in Coq.Numbers.Natural.BigN.Nbasic]
spec_div [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div21 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div21 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div21 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_double_digits [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1_p [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1_0 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_p [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_0 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_mul_add_n1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_double_mul_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_double_split [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_to_Z [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_WW [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_0 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_eq0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_eq0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_eq0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_extend [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_extend_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_gcd [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_gcd [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_gcd [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_gcd_cont [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_gcd_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_gcd_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_get_low [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_head0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_head0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_head00 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head00 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_head00 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_high [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_is_even [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_is_even [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_is_even [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_kara_prod [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_low [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_mod [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mod [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mod [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mod_gt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mod_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_more_than_1_digit [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_more_than_1_digit [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_more_than_1_digit [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mul [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mul_add [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_mul_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_mul_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mul_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_of_pos [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_of_pos [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp [lemma, in Coq.Numbers.Natural.BigN.Nbasic]
spec_opp [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_opp [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_opp_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pos_mod [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pos_mod [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pos_mod [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pred [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pred [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pred_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pred_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_split [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_split [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_sqrt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sqrt [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt2 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt2 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt2 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_square_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_square_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_square_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_carry_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_carry_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_succ [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_succ [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ_c [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_succ_c [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_tail0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_tail00 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_tail00 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_tail00 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_to_N [lemma, in Coq.Numbers.Integer.BigZ.BigZ]
spec_to_Z [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z [lemma, in Coq.Numbers.Integer.BigZ.BigZ]
spec_to_Z [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_to_Z_pos [lemma, in Coq.Numbers.Integer.BigZ.BigZ]
spec_to_Z_1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z_2 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_WW [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_ww_add [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_carry [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_carry [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add_carry_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_carry_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add_c_cont [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_mul_div [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_add_mul_div [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add_mul_div_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_Bm1 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_Bm1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_Bm1 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_compare [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_compare [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_digits [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_div [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_div [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div21 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div21 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_div_gt [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_div_gt [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div_gt_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_eq0 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_gcd [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_gcd [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_gcd_gt_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt_aux_body [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_head0 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_head0 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_head00 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_head00 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_head1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_is_even [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_is_even [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_is_zero [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_karatsuba_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_karatsuba_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_mod [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_mod_gt [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_mod_gt [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_aux [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_aux_eq [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_eq [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mul [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_mul [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_mul_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_mul_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_of_pos [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_opp [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_opp [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_opp_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_opp_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_opp_carry [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_opp_carry [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_pos_mod [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_pred [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_pred [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_pred_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_pred_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sqrt [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sqrt [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_sqrt2 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sqrt2 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_square_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_square_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_sub [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sub_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sub_carry [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_sub_carry [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub_carry_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub_carry_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_succ [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_succ [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_succ_c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_succ_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_tail0 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_tail0 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_tail00 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_tail00 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_to_Z [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_to_Z [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_to_Z [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_to_Z_wBwB [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_0 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_1 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_1 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_W0 [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_w_div2s [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_w_div21c [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_w_div32 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_w_div32 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_w_mod_gt_eq [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_w_mul_add [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_w_2 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_zdigits [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_zdigits [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_zdigits [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_0 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_0W [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_1 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_1 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_1 [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
split [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
split [definition, in Coq.Lists.List]
SplitAbsolu [library]
SplitRmult [library]
split_combine [lemma, in Coq.Lists.List]
split_length_l [lemma, in Coq.Lists.List]
split_length_r [lemma, in Coq.Lists.List]
split_nth [lemma, in Coq.Lists.List]
sp_noswap [constructor, in Coq.Relations.Relation_Operators]
sp_swap [constructor, in Coq.Relations.Relation_Operators]
sqrt [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
sqrt [definition, in Coq.Reals.R_sqrt]
sqrtrempos [definition, in Coq.ZArith.Zsqrt]
sqrt2 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
sqrt2_neq_0 [lemma, in Coq.Reals.Rtrigo_calc]
sqrt31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt312 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt312_lower_bound [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt312_step_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step_def [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt31_step [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sqrt31_step_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt31_step_def [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt3_2_neq_0 [lemma, in Coq.Reals.Rtrigo_calc]
sqrt_cauchy [lemma, in Coq.Reals.R_sqrt]
sqrt_continuity_pt [lemma, in Coq.Reals.Sqrt_reg]
sqrt_continuity_pt_R1 [lemma, in Coq.Reals.Sqrt_reg]
sqrt_data [inductive, in Coq.ZArith.Zsqrt]
sqrt_def [lemma, in Coq.Reals.R_sqrt]
sqrt_div [lemma, in Coq.Reals.R_sqrt]
sqrt_eq_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_init [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_inj [lemma, in Coq.Reals.R_sqrt]
sqrt_lem_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_lem_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_less [lemma, in Coq.Reals.R_sqrt]
sqrt_le_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_le_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_R0 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_lt_1 [lemma, in Coq.Reals.R_sqrt]
sqrt_main [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_main_trick [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_more [lemma, in Coq.Reals.R_sqrt]
sqrt_mult [lemma, in Coq.Reals.R_sqrt]
sqrt_positivity [lemma, in Coq.Reals.R_sqrt]
Sqrt_reg [library]
sqrt_Rsqr [lemma, in Coq.Reals.R_sqrt]
sqrt_Rsqr_abs [lemma, in Coq.Reals.R_sqrt]
sqrt_sqrt [lemma, in Coq.Reals.R_sqrt]
sqrt_square [lemma, in Coq.Reals.R_sqrt]
sqrt_test_false [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_test_true [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_var_maj [lemma, in Coq.Reals.Sqrt_reg]
sqrt_0 [lemma, in Coq.Reals.R_sqrt]
sqrt_1 [lemma, in Coq.Reals.R_sqrt]
sqr_pos [lemma, in Coq.ZArith.Zcomplements]
square_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
square_not_prime [lemma, in Coq.ZArith.Znumtheory]
Sstar_contains_Rstar [lemma, in Coq.Sets.Relations_2_facts]
star_monotone [lemma, in Coq.Sets.Relations_2_facts]
StepFun [record, in Coq.Reals.RiemannInt_SF]
StepFun_P1 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P10 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P11 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P12 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P13 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P14 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P15 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P16 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P17 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P18 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P19 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P2 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P20 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P21 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P22 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P23 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P24 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P25 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P26 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P27 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P28 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P29 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P3 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P30 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P31 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P32 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P33 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P34 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P35 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P36 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P37 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P38 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P39 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P4 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P40 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P41 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P42 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P43 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P44 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P45 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P46 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P5 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P6 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P7 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P8 [lemma, in Coq.Reals.RiemannInt_SF]
StepFun_P9 [lemma, in Coq.Reals.RiemannInt_SF]
Stream [inductive, in Coq.Lists.Streams]
StreamMemo [library]
Streams [section, in Coq.Lists.Streams]
Streams [library]
Streams.A [variable, in Coq.Lists.Streams]
Streams.Stream_Properties [section, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll [section, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.Inv [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.InvIsStable [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.Co_Induction_ForAll.InvThenP [variable, in Coq.Lists.Streams]
Streams.Stream_Properties.P [variable, in Coq.Lists.Streams]
Streicher_K_ [definition, in Coq.Logic.EqdepFacts]
Streicher_K__eq_rect_eq [lemma, in Coq.Logic.EqdepFacts]
strictincreasing_strictdecreasing_opp [lemma, in Coq.Reals.MVT]
strict_decreasing [definition, in Coq.Reals.Ranalysis1]
Strict_Included [definition, in Coq.Sets.Ensembles]
Strict_Included_intro [lemma, in Coq.Sets.Constructive_sets]
Strict_Included_inv [lemma, in Coq.Sets.Classical_sets]
Strict_Included_strict [lemma, in Coq.Sets.Constructive_sets]
Strict_inclusion_is_transitive [lemma, in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion [lemma, in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion_left [lemma, in Coq.Sets.Powerset]
strict_increasing [definition, in Coq.Reals.Ranalysis1]
Strict_Rel_is_Strict_Included [lemma, in Coq.Sets.Powerset]
Strict_Rel_of [definition, in Coq.Sets.Partial_Order]
Strict_Rel_Transitive [lemma, in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel [lemma, in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel_left [lemma, in Coq.Sets.Partial_Order]
Strict_super_set_contains_new_element [lemma, in Coq.Sets.Classical_sets]
String [constructor, in Coq.Strings.String]
string [inductive, in Coq.Strings.String]
String [library]
string_dec [definition, in Coq.Strings.String]
strip_commut [lemma, in Coq.Wellfounded.Union]
Strongly_confluent [definition, in Coq.Sets.Relations_2]
Strong_confluence [lemma, in Coq.Sets.Relations_3_facts]
Strong_confluence_direct [lemma, in Coq.Sets.Relations_3_facts]
Str_nth [definition, in Coq.Lists.Streams]
Str_nth_map [lemma, in Coq.Lists.Streams]
Str_nth_plus [lemma, in Coq.Lists.Streams]
Str_nth_tl [definition, in Coq.Lists.Streams]
Str_nth_tl_map [lemma, in Coq.Lists.Streams]
Str_nth_tl_plus [lemma, in Coq.Lists.Streams]
Str_nth_tl_zipWith [lemma, in Coq.Lists.Streams]
Str_nth_zipWith [lemma, in Coq.Lists.Streams]
sub [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
subdivision [definition, in Coq.Reals.RiemannInt_SF]
subdivision_val [definition, in Coq.Reals.RiemannInt_SF]
SubEqui [definition, in Coq.Reals.RiemannInt]
SubEquiN [definition, in Coq.Reals.RiemannInt]
SubEqui_P1 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P2 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P3 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P4 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P5 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P6 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P7 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P8 [lemma, in Coq.Reals.RiemannInt]
SubEqui_P9 [lemma, in Coq.Reals.RiemannInt]
subfamily [definition, in Coq.Reals.Rtopology]
subrelation [definition, in Coq.Init.Logic]
subrelation [record, in Coq.Classes.RelationClasses]
subrelation [inductive, in Coq.Classes.RelationClasses]
subrelation_done [inductive, in Coq.Classes.Morphisms]
subrelation_id_morphism [instance, in Coq.Classes.Morphisms]
subrelation_morphism [lemma, in Coq.Classes.Morphisms]
subrelation_partial_order [instance, in Coq.Classes.RelationClasses]
subrelation_pointwise [instance, in Coq.Classes.Morphisms_Relations]
subset [definition, in Coq.Logic.ClassicalChoice]
Subset [library]
subset_eq [lemma, in Coq.Program.Subset]
Subset_projections [section, in Coq.Init.Specif]
Subset_projections.A [variable, in Coq.Init.Specif]
Subset_projections.P [variable, in Coq.Init.Specif]
subset_types_imp_guarded_rel_choice_iff_rel_choice [lemma, in Coq.Logic.ChoiceFacts]
substring [definition, in Coq.Strings.String]
substring_correct1 [lemma, in Coq.Strings.String]
substring_correct2 [lemma, in Coq.Strings.String]
Subtract [definition, in Coq.Sets.Ensembles]
Subtract_intro [lemma, in Coq.Sets.Classical_sets]
Subtract_inv [lemma, in Coq.Sets.Classical_sets]
sub31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sub31c [definition, in Coq.Numbers.Cyclic.Int31.Int31]
sub31carryc [definition, in Coq.Numbers.Cyclic.Int31.Int31]
Sub_Add_new [lemma, in Coq.Sets.Powerset_Classical_facts]
sub_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
sub_carry [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
sub_carry [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
sub_carry_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
sub_opp [lemma, in Coq.Numbers.Integer.BigZ.BigZ]
succ [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
succ_c [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
succ_IZR [lemma, in Coq.Reals.RIneq]
succ_plus_discr [lemma, in Coq.Arith.Plus]
succ_pred [lemma, in Coq.Numbers.Natural.BigN.BigN]
sum [inductive, in Coq.Init.Datatypes]
sumbool [inductive, in Coq.Init.Specif]
Sumbool [library]
sumbool_and [definition, in Coq.Bool.Sumbool]
sumbool_not [definition, in Coq.Bool.Sumbool]
sumbool_of_bool [definition, in Coq.Bool.Sumbool]
sumbool_or [definition, in Coq.Bool.Sumbool]
sumor [inductive, in Coq.Init.Specif]
sum_cte [lemma, in Coq.Reals.PartSum]
sum_cv_maj [lemma, in Coq.Reals.PartSum]
sum_decomposition [lemma, in Coq.Reals.PartSum]
sum_eq [lemma, in Coq.Reals.PartSum]
sum_eqdec [instance, in Coq.Classes.EquivDec]
sum_eq_R0 [lemma, in Coq.Reals.PartSum]
sum_f [definition, in Coq.Reals.Rfunctions]
sum_f_R0 [definition, in Coq.Reals.Rfunctions]
sum_f_R0_triangle [lemma, in Coq.Reals.Rfunctions]
sum_growing [lemma, in Coq.Reals.PartSum]
sum_incr [lemma, in Coq.Reals.PartSum]
sum_inequa_Rle_lt [lemma, in Coq.Reals.RIneq]
sum_maj1 [lemma, in Coq.Reals.SeqSeries]
sum_mul_carry [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
sum_mul_carry [lemma, in Coq.Numbers.BigNumPrelude]
sum_nat [definition, in Coq.Reals.Rfunctions]
sum_nat_f [definition, in Coq.Reals.Rfunctions]
sum_nat_f_O [definition, in Coq.Reals.Rfunctions]
sum_nat_O [definition, in Coq.Reals.Rfunctions]
sum_N_predN [lemma, in Coq.Reals.Cauchy_prod]
sum_plus [lemma, in Coq.Reals.Cauchy_prod]
sum_Rle [lemma, in Coq.Reals.PartSum]
sup [constructor, in Coq.Wellfounded.Well_Ordering]
Surjective [record, in Coq.Classes.Functions]
Surjective [inductive, in Coq.Classes.Functions]
surjective [projection, in Coq.Classes.Functions]
surjective [constructor, in Coq.Classes.Functions]
surjective_pairing [lemma, in Coq.Init.Datatypes]
Swap [section, in Coq.Wellfounded.Lexicographic_Product]
Swap [section, in Coq.Relations.Relation_Operators]
SwapProd [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
swapprod [inductive, in Coq.Relations.Relation_Operators]
Swap.A [variable, in Coq.Wellfounded.Lexicographic_Product]
Swap.A [variable, in Coq.Relations.Relation_Operators]
Swap.R [variable, in Coq.Wellfounded.Lexicographic_Product]
Swap.R [variable, in Coq.Relations.Relation_Operators]
swap_Acc [lemma, in Coq.Wellfounded.Lexicographic_Product]
swap_sumbool [definition, in Coq.Classes.SetoidDec]
swap_sumbool [definition, in Coq.Classes.EquivDec]
Symmetric [record, in Coq.Classes.RelationClasses]
Symmetric [inductive, in Coq.Classes.RelationClasses]
Symmetric [definition, in Coq.Sets.Relations_1]
symmetric [definition, in Coq.Relations.Relation_Definitions]
symmetric_equiv_inverse [lemma, in Coq.Classes.Morphisms]
Symmetric_Product [section, in Coq.Relations.Relation_Operators]
Symmetric_Product.A [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.B [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.leA [variable, in Coq.Relations.Relation_Operators]
Symmetric_Product.leB [variable, in Coq.Relations.Relation_Operators]
symmetry [projection, in Coq.Classes.RelationClasses]
symmetry [constructor, in Coq.Classes.RelationClasses]
symprod [inductive, in Coq.Relations.Relation_Operators]
Symprod [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
sym_eq [lemma, in Coq.Init.Logic]
sym_EqSt [lemma, in Coq.Lists.Streams]
sym_equal [definition, in Coq.Init.Logic]
sym_id [lemma, in Coq.Init.Logic_Type]
sym_JMeq [lemma, in Coq.Logic.JMeq]
sym_not_eq [lemma, in Coq.Init.Logic]
sym_not_equal [definition, in Coq.Init.Logic]
sym_not_id [lemma, in Coq.Init.Logic_Type]
Syntax [library]
S_INR [lemma, in Coq.Reals.RIneq]
S_O_plus_INR [lemma, in Coq.Reals.RIneq]
S_pred [lemma, in Coq.Arith.Lt]
S_to_Finite_set [module, in Coq.FSets.FSetToFiniteSet]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13565 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (95 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (211 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (305 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (352 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (297 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (183 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2869 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (287 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)