
GNADE User’s Guide

GNADE, The GNat Ada Database Environment

Version 1.2.0

Document Revision $Revision: 1.26 $

Michael Erdmann

Jürgen Pfeifer

Edited by

Michael Erdmann

GNADE User’s Guide: GNADE, The GNat Ada Database Environment; Version 1.2.0; Document
Revision $Revision: 1.26 $
by Michael Erdmann and Jürgen Pfeifer

Edited by Michael Erdmann

Copyright © 2001 by J.Pfeifer, M. Erdmann

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the
Front-Cover Texts being "The GNat Ada Database Environment". A copy of the license is included in the section entitled
"GNU Free Documentation License".

Revision History

Revision $Revision: 1.26 $$Date: 2001/11/03 20:16:33 $Revised by: $Author: me $

Table of Contents
Preface..7

I. Introduction ..8

1. Project Objectives..9
2. Software License..10
3. Trademarks...11
4. Supported Databases and OS platforms...12
5. Getting started..13

Installation on Unix like systems...13
Unpacking the distribution..13
Configuring the GNADE installation..13
Preparation of the test data base..14
Compiling the distribution..14
Installing GNADE globally on the system...14

Installation on Windows NT...15
Unpacking the distribution..15
Compiling the distribution..15
Installation on your system...16

6. Using the release with your database...17
If your data base is not supported...17
Installation of the ODBC Interface...17
Prepared Example Programs..18

7. Contents of the GNADE distribution...20
8. Contact...21
9. Authors...22

II. GNU Embedded SQL Translator for Ada 95...23

10. Introduction to Embedded SQL...24
11. Embedded SQL Syntax Specification..26

The GNU Ada 95 Embedded SQL...26
Embedded SQL statement..26
SQL Query and FETCH clause..27
Embedded SQL declare section..28
Embedded Exception Declaration..30
Handling of return codes..31
SQL Communication Area...31
Connection Handling..33
Cursor Handling...34
Mixing ODBC and embedded SQLcode..35

3

Dynamic SQL...36
GNADE Specific Datatypes...37

12. The ESQL Translator...40
Compilation Process...40
Invocation of the GNU ESQL Translator (gesql)...40

III. ODBC bindings for Ada 95 ..42

13. Introduction to ODBC..43
14. Using the Ada 95 ODBC Bindings..45

General remarks..45
A minimal odbc example..45
Implemented ODBC methods..47

15. Building ODBC based programs...50
16. Ada95 aspects of the ODBC binding...51

IV. Native Bindings..54

17. Introduction to native bindings..55
18. MySQL bindings..56

The MYSQL API...56
Building programs with MySQL..58

19. Postgres bindings...59

A. Frequently asked questions..60

Q: How to handle strings in where clauses..60
Q: How to handle connection failures..60

B. The GNU.DB Packages...62

GNU.DB.ESQL_Support...62
String related type conversion..62
SQL Communication Area...62
Exceptions..63

ODBC related packages...63

C. Porting legacy code...65

Migrating from Oracle to GNADE..65
Host variables...65
Query Results...65
Others...65

D. GNU Free Documentation License..66

0. PREAMBLE..66
1. APPLICABILITY AND DEFINITIONS ..66
2. VERBATIM COPYING...67
3. COPYING IN QUANTITY...67

4

4. MODIFICATIONS...68
5. COMBINING DOCUMENTS...70
6. COLLECTIONS OF DOCUMENTS..70
7. AGGREGATION WITH INDEPENDENT WORKS..70
8. TRANSLATION..71
9. TERMINATION...71
10. FUTURE REVISIONS OF THIS LICENSE...71

E. GNU Public License (GPL) Version 2...73

5

List of Tables
4-1. Supported Platforms...12
7-1. Production results of the GNADE Project..20
11-1. Exception Actions..30
12-1. Options...40

List of Examples
6-1. /etc/odbc.ini entry for the test data base...17
10-1. Example for Embedded SQL...24
11-1. Embedded SQL Statements..27
11-2. Local SQLCA in procedures..32
11-3. Using DB connections as procedure arguments...33
11-4. Local Cursors...34
11-5. Accessing ODBC handles..35
11-6. Using dynamic SQL...37
11-7. Using VARCHAR..38
14-1. Preparing data of the ODBC driver..45
14-2. Connecting to the data base via ODBC..45
14-3. Preparing the Query via ODBC..46
14-4. Using host variable with ODBC...46
14-5. Creating the result set for a query..47
14-6. Fetching data of the result set via ODBC...47
18-1. MySQL native binding - Connecting to the database..56
18-2. MySQL native binding - Executing a query...56
18-3. MySQL native binding - Accessing the result set..57
18-4. MySQL native binding - Dropping the query..57
A-1. Using a string in the WHERE clause..60
A-2. Intercpetion connection errors...60

6

Preface
This document describes the GNADE project application and implementation wise. The document is
intended as a living document for developers and users of the GNADE project.

7

I. Introduction

Chapter 1. Project Objectives
The objective of the GNADE project is to provide an open source environment of tools and libraries in
order to integrate SQL into Ada 95. In order to achieve this ODBC and embedded SQL have be selected
as platform.

ODBC provides the interface between application code and the underlying dbcs. This interface has been
selected because most if the commonly used data bases are providing ODBC.

Embedded SQL (ESQL) provides the framework to integrate SQL queries into the Ada code. ESQL has
been selected because there exists a huge amount of legacy code which could be reused. Even ESQL is
standardized there are a lot of different implementations around. The ESQL translator in this project tries
to merge several ESQL dialects into a single translator.

In long terms the project will provide means to integrate features which are not part of the ISO/92 ESQL
specification via extensions of ESQL.

9

Chapter 2. Software License
The GNU Public License (GPL) applies with the following extension to all software components of this
project.

As a special exception, if other files instantiate generics from GNADE Ada units, or you link GNADE
Ada units or libraries with other files to produce an executable, these units or libraries do not by itself
cause the resulting executable to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the executable file might be covered by the GNU Public
License.

10

Chapter 3. Trademarks
Red Hat™ is a registered trademark of Red Hat, Inc..

Linux™ is a registered trademark of Linus Torvalds.

UNIX™ is a registered trademark of The Open Group.

Alpha™ is a registered trademark of the Digital Equipment Corporation.

Windows™is a registered trademark of the Microsoft Corporation.

11

Chapter 4. Supported Databases and OS
platforms
The table below given an overview about the supported operating systems and databases. For the detailed
versions for each product, consult the release notes of the relevant GNADE version.

Table 4-1. Supported Platforms

Linux Redhat 7.0 Postures Automatically handled by the
configure script

Linux Redhat 7.0 MySQL Automatically handled by the
configure script

Linux Redhat 7.0 MimerSQL Automatically handled by the
configure script

SuSe 7.0 Postgres Automatically handled by the
configure script

Windows NT Postgres The makefile in ./win32 do not
support any automatic
configuration and installation of
the test database.

Windows NT Mimer The makefile in ./win32 do not
support any automatic
configuration and installation of
the test database.

Windows 2000 MySQL The makefile in ./win32 do not
support any automatic
configuration and installation of
the test database.

12

Chapter 5. Getting started
The GNADE project distribution is currently distributed only as development snapshot, which means the
packages do not contains any binary files. There for before starting make sure that you have all required
tools (see release notes ./doc/releasenotes).

The development package contains the sources for all platforms so far supported. GNADE support the
two major platforms Windows NT and Unix/Linux. The following sections are describing the installation
steps for both platforms.

Installation on Unix like systems
After you obtained the source code from the net you need to install and compile it. This chapter
describes this first steps of installing the environment onto your system.

Unpacking the distribution
The source code is normally distributed as compressed tar file. To unpack the distribution execute the
command:

gunzip -c | tar xvf -

This will unpack the directory tree of the development environment.

Configuring the GNADE installation
The GNADE environment may be configured to a certain extend. The file make.conf.in contains some
parameters which might be adopted to the needs of your system.

After unpacking the distribution change into the top level directory of the GNADE release as shown
below and run the configure script.

cd gnade-src-....
./configure <database >

For the supported data bases please check the README file in the gnade directory. If you don’t have one
of the supported data bases on your system then omit the database. As a result the samples code will be
compiled except the code for native bindings, but the sample data base will not be available.

13

Chapter 5. Getting started

Preparation of the test data base
In order to allow the installation of the test database, most of the commonly known dbcs’s require a data
base user to be installed. This normally required certain DBA privileges. There for this step is expected
to be done manual as shown below (The name of the user, the name of the data base is specified in
make.conf.in).

su <dbcs root >

make createuser

The user may be deleted by the command make removeuser.

In order to test the functionality of the data base you may create the test data base already at this point by
the following commands:

make removedb
make createdb

This will create a database gnade which contains at least the table EMPLOYEES which may be checked
manually.

Mimer SQL: In case of Mimer SQL the user is created as root, but the make createdb command has
to be executed as the same user which is used to run the test examples. If thus is not done, the
examples will fail!

Compiling the distribution
To build the GNADE executable enter the command below:

make all

This will build all components of the GNADE project and the test data base is this has not been done
previously.

Installing GNADE globally on the system
The development environment is self containing, which means as long as applications are developed in
the directory where GNADE is installed and the make files are used, all components are taken from the

14

Chapter 5. Getting started

GNADE lib directory. This method limits the use to one user. In order to make GNADE available to all
users on your system you need to install the GNADE libraries. Installation is done as root by executing
the directory ../gnuada/gnade the following command:

make install

This should install the libraries of the GNADE project in your system. Because this procedure depends
on the type of your system please check and modify the following variables in make.conf.in before
execution.

LIBINSTALL=/usr/local/lib/ada
BININSTALL=/usr/bin

Installation on Windows NT
Building the GNADE project for Windows NT does not require the configuration step as for Linux. The
preconfigured Makefiles are located in the ./win32 directory.

Unpacking the distribution
The source code is normally distributed as ZIP file, which is easy to unpack by means of Windows
utilities as e.g WinZip. From the DOS command line use:

unzip gnade-src-arch-version.zip
cd gnade-src-arch-version

This will unpack the directory tree of the development environment.

Compiling the distribution
As for Unix the compilation process is based upon the execution of a Makefile. In order to compile the
distribution perform the following commands:

cd win32
make

15

Chapter 5. Getting started

Installation on your system
An automatic and configurable procedure has not been yet developed.

16

Chapter 6. Using the release with your
database
The GNADE package provides a small test data base for the examples stored under ./samples. The
Makefile assumes for each supported data base vendor X a ./samples/X directory where the example
code for the native binding is stored.

The ODBC bases examples are using all the same data base stored under ./samples/sample_db. This data
base contains the tables EMPLOYEES and DEPARTEMENTS.

If your data base is not supported
If your data base is not supported the test data base has to be installed manually or preferably the data
base has to be included in the configuration process which is described in the following.

The DML commands to create the data base are contained in the gnade.postgres.sql file which can be
used as a template for the new data base.

The following files have to be created for the new DBCS vendor X.

• Makefile.X

This Makefile has the targets createuser, removeuser and createdb, removedb.

• gnade.X.sql

This file contains the DML’s for the creation of the data base.

• README.X

This file contains a data base specific readme which is shown after createdb, removedb.

• removeuser.X, createuser.X

These files do contains the command required to create a data base user which is allowed to create
tables and able to read the gnade data base.

Installation of the ODBC Interface
In order to allow the test programs to connect to the data base via odbc the following entry has to be
added either to /etc/odbc.ini or .odbc.ini on Unix systems.

17

Chapter 6. Using the release with your database

During the process of configuration, templates for the ODBC wise installation of the data base are
prepared under ./samples/sample_db as shown below.

Example 6-1. /etc/odbc.ini entry for the test data base

[DEMO_DB]
Description = Demo Database for GNADE
Driver = PostgreSQL
Database = gnade
Servername = localhost
Port = 5432
ReadOnly = No
RowVersioning = No
ShowSystemTables = No
ShowOidColumn = No
FakeOidIndex = No
ConnSettings =
Trace = Yes
TraceFile = sql.log

Prepared Example Programs
All examples are located in the directories samples and contrib.

• Makefile

This is the makefile which builds all examples

• esql

Several examples demonstrating the features of the esql translator. Both examples are focused on
cursor handling.

• mysql

Example for the MySQL native bindings

This example creates it’s own data base called "testdb" and issues a query. The query result is printed
out.

• odbc

18

Chapter 6. Using the release with your database

An example how to use the ODBC interface directly.

A simple example that executes a query on the gnade test data base.

• postgres

Example for the Postgres native bindings

A simple example that executes a query on the gnade test data base.

19

Chapter 7. Contents of the GNADE
distribution
This section gives a short overview of the production results of the development environment.

Table 7-1. Production results of the GNADE Project

ODBC Binding Thin ODBC Binding for Ada 95. ./dbi/odbc

ESQL Translator Translator for embedded SQL
working on top of the ODBC
bindings.

./esql

Samples Samples demonstrating the use
of some of the GNADE
components and features.

./samples, ./contrib

Documentation Documentation of the GNADE
project is generated from
DocBook. The makefile produces
pdf, html and dvi files.

./doc

20

Chapter 8. Contact
The home page for the project is located at http://gnade.sourceforge.net.

All project activities are maintained at http://sourcefroge.net/projects/gnade

All technical communication regarding the GNADE project is done via a mailing list which is hosted at
http://cert.uni-stuttgart.de/mailman/listinfo/gnade-dev
(http://cert.uni-stuttgart.de/mailman/listinfo/gnade-dev).

The coordination of the development work is done by:

Michael Erdmann
<Michael.Erdmann@snafu.de >

21

Chapter 9. Authors
These are the authors and copyright holders of the GNADE software (in alphabetical order of their last
name):

Michael Erdmann michael.erdmann@snafu.de
François Fabien fr.fabien@infonie.fr

Sune Falck sunef@hem.passagen.se
Juergen Pfeifer juergen.pfeifer@gmx.net

22

II. GNU Embedded SQL Translator
for Ada 95

23

Chapter 10. Introduction to Embedded
SQL
The GNU Embedded SQL Translator for Ada 95 reads a Ada 95 source file containing an Ada 95
package which contains embedded SQL Commands. A typical code fragment which is embedded into a
normal Ada 95 source text is shown below:

Example 10-1. Example for Embedded SQL

EXEC SQL AT DB01x
SELECT LOCATION INTO :dep_location

FROM departments
WHERE DEPTNO = :depno ;

if SQLCODE not in SQL_STANDARD.NOT_FOUND then
Put_Line(

"Employee : " & Trim(To_String(Name),Right) & - bug
" working in dep. " & INT’Image(depno) & -
" located at " & Trim(To_String(dep_location),Right));

end if;
..............

Embedded SQL commands are always preceded by the string EXEC SQL. According to ISO/92 all text
following until the semicolon forms the query which has to be send to the DBCS. The communication
between the SQL query and the application code is done by means of so called host variables. A host
variable contains either a parameter as input to a query or the result of a query after the query has been
executed by the DBCS. A host variable in an SQL query is marked by a preceding colon (’:’). Host
variables are declared in a specially marked declare section, where the ISO/92 standard allows only a
limited number of data types which may be used for host variables. These data types are defined in the
package SQL_STANDARD.

In order to communicate to data bases, ESQL uses in each ESQL statement an optional data base
identifier. This identifier is assigned by means of a connect statement to a data base as shown below. First
of all is the connection identifier declared to be DB01.

........
EXEC SQL DECLARE DB01 DATABASE ;

.........
begin

EXEC SQL CONNECT "gnade"
IDENTIFIED BY "xxxxxxx"

24

Chapter 10. Introduction to Embedded SQL

BY DB01
TO "DEMO_DB" ;

end;

Later, during the initialization of the package, we connect as user "gnade" with the password "xxxxxx" to
the database "DEMO_DB". The connection which will be used will be referred as DB01 in all ESQL
statements. The name DEMO_DB refers to the data source name in the ODBC setup.

25

Chapter 11. Embedded SQL Syntax
Specification

The GNU Ada 95 Embedded SQL
The ESQL translator is based on the ISO/92 standard for Embedded SQL, but a lot of issues have been
left out there. In order to allow comfortable coding several extensions have been added, which have been
derived from other popular ESQL dialects for Ada 95. These add ons are not specially marked, because i
believe without these extensions it would not possible to implement an application.

Embedded SQL statement
Every embedded SQL Statement has the same general structure shown as below. For each query the
programmer may specify the data bases where the query has to be applied. If the data base is not
explicitly specified, the default data base connection is assumed.

Syntax:

<embedded SQL statement > ::=
<SQL prefix >

statement or declaration
[<SQL terminator >]

<statement or declaration > ::=
| <include clause >

| <connect clause >

| <declare clause >

| <temporary table declaration >

| <dynamic sql clause >

| <query clause >

| <fetch clause >

| <embedded SQL declare section >

<embedded exception declaration >

;

<SQL prefix > ::=
EXEC SQL [<DB clause >] [<for clause >]

<SQL terminator > ::=
END-EXEC

26

Chapter 11. Embedded SQL Syntax Specification

| <semicolon >

| <right paren >

;

<DB clause > ::= AT <name>
<for clause > ::= FOR <expression > (not yet implemented)

<include clause > ::=
<include_sqlca_clause >

| <include_handles >

;

<declare clause > ::=
<declare_db_clause >

| <declare_table_clause >

| <declare cursor >

;

Example 11-1. Embedded SQL Statements

EXEC SQL AT db01 select * from employees ;

This example sends a query to the db01.

All components of the ESQL statement which are not part of the esql grammar will be copied directly
into the query which is to be sent to the dbcs.

SQL Query and FETCH clause
A query may be issued by either defining a cursor or a direct query where only one row is expected. The
syntax for the later case is shown below.

<query > ::=
’SELECT’ <column list >

’INTO’ <host variable list >

’WHERE’...... rest of query
;

<host variable list > ::=
<variable > [[’INDICATOR’] <variable >

| <host variable list >

| <empty >

27

Chapter 11. Embedded SQL Syntax Specification

;

<variable > :: = ’:’ <identifier > ;

The esql handles this statement as a normal SQL statement but removing the ’INTO’ clause from the
SQL string which is sent to the dbcs. The host variables listed in the<host variable list> are used to
store the columns of the query result.

<fetch clause; > ::=
’FETCH’

[’FROM’ <cursor >

| ’USING’ [’STATEMENT’] <statementname >]
’INTO’ <host variable list >

;

Either a cursor name or a statement name (see dynamic sql) may be given as a source for the fetch
command.

Embedded SQL declare section
This section contains all definitions of host variables. Note, that not all data types are allowed for a
variable in this section.

Syntax:
<embedded SQL declare section > ::=

<embedded SQL begin declare >

[<embedded character set declaration >]
[<host variable definition > ...]

<embedded SQL end declare >

<embedded character set declaration > ::=
SQL NAMES ARE<character set specification >

<embedded SQL begin declare > ::=
<SQL prefix > BEGIN DECLARE SECTION [<SQL terminator >]

<embedded SQL end declare > ::=
<SQL prefix > END DECLARE SECTION [<SQL terminator >]

<host variable definition > ::=

28

Chapter 11. Embedded SQL Syntax Specification

<Host Identifiers > ’:’ <Ada type specification >

[’:=’ <Ada initial values > ’;’]

<embedded variable name > ::=
’:’ <host identifier >

<host identifier > ::=
<Ada host identifier >

<Host identifiers > ::=
<host identifier >

| <host identifier > ’,’ <host identifiers >

<Ada type specification > ::=
<Ada qualified type specification >

| <Ada unqualified type specification >

<Ada qualified type specification > ::=
’SQL_STANDARD.’ <Ada unqualified type specification >

<Ada unqualified type specification > ::=
CHAR

[CHARACTER SET [IS] <character set specification >]
’(’ 1.. <length >’)’

| BIT ’(’ 1 .. <length > ’)’
| SMALLINT
| INT
| REAL
| DOUBLE_PRECISION
| SQLCODE_TYPE
| SQLSTATE_TYPE
| INDICATOR_TYPE
| GNADE.<GNADE specific type >

Character set declaration is not supported. If the pedantic option (-pedantic) has been set, a warning will
be issued and every thing will be skipped until the next semicolon.

Ada support host variable definitions in the scope of a subprogram. The current implementation of esql
does not follow the scope of Ada. This will cause warning, that the type of a host variable is changed.

The translator will issue an Error if the -pedantic has been set if the type is not one of the ones listed
above. If the -pedantic switch is not used only a warning is issued. The context clauses regarding the
SQL_STANDARD and other packages has to be added to the source by the developer. The translator will

29

Chapter 11. Embedded SQL Syntax Specification

add only those packages which are needed to interface with ODBC. The correctness of the identifier will
not be checked by the translator except for lexical rules which are needed to parse the code. The Ada
compiler has to verify the validity of the identifier.

Implementation Note: The Character set modifier is not supported. It is simply discarded and a
warning is issued, that the construct is not supported.

Embedded Exception Declaration
The clause may be used to define the handling of certain conditions after a query. The result of the query
is evaluated and the action as defined in the action clause is executed.

Syntax:
<embedded exception declaration > ::=

WHENEVER<condition > <condition action >

<condition > ::=
SQLERROR | NOT FOUND | SQLWARNING

<condition action > ::=
CONTINUE

| <go to >

| RAISE <host_exception >

| DO <target >

| STOP

<go to > ::=
{ GOTO | GO TO } <goto target >

<goto target > ::=
<host label identifier >

A defined condition is applies to the next SQL query. By using the switch-noiso92 the code generator
may be forced to apply whenever clause to all embedded SQL statements until the next whenever clause
occurs.

Table 11-1. Exception Actions

30

Chapter 11. Embedded SQL Syntax Specification

GOTO The translator inserts a goto statement to the
label specified in the target.

RAISE The translator inserts a raise statement with an
exception as specified in the target. The exception
information will contain the line number of the
query in the input source file and the package
name. Additionally the contents of the message in
the SQLCA is added.

DO The procedure named in the target specification
is called.

CONTINUE This clause will reset all previous actions for the
given condition.

Handling of return codes
The following variables will be inserted automatically on package level.

package body XXX is

SQLCODE : SQL_STANDARD...;
SQLSTATE : SQL_STANDARD...;

These variables will be updated after every query send to the data base. This variable may be used to
check the result of a query. The elaboration of the WHENEVER clause is based on these variables as
well. Please note, this method is not thread save.

SQL Communication Area
The GNU.DB.ESQL_SUPPORT package provides a so called SQL communication area type. This area
contains informations about the result of the last query.

Syntax:

<include_sqlca_clause > ::=
INCLUDE SQLCA

This statement will insert a SQLCA in the Ada 95 code. If this is done in the declare section of a
procedure as shown below, the SQLCA will be declared local to the procedure.

31

Chapter 11. Embedded SQL Syntax Specification

Example 11-2. Local SQLCA in procedures

procedure Print_Departement(
departement : in Integer) is
--
EXEC SQL BEGIN DECLARE SECTION END-EXEC
Name : CHAR(1..15) := (others=>32);
.............
Salary : DOUBLE_PRECISION := 0.0;

EXEC SQL END DECLARE SECTION END-EXEC

EXEC SQL INCLUDE SQLCA ; - Make a private SQLCA

begin

.....
EXEC SQL AT DB01

DECLARE emp_cursor CURSOR FOR
SELECT EMPNO, FIRSTNAME, NAME, JOB, MANAGER, SALARY
FROM employees
WHERE deptno = :Depno ;

....
end;

The application may access the contents by using the variable name SQLCA in the application code.
This method is preferable in a multi thread environment, because it avoids interferences between threads
through the global variables SQLCODE and SQLSTATE.

The SQLCA provides several fields containing usefull information about the most recently executed
query as shown below:

type SQLCA_Type is record
Message : aliased String(1..255);
State : aliased SQLSTATE_TYPE;
SqlCode : aliased SQLCODE_TYPE;
Affected_Rows : aliased Integer := 0;

end record;

The parameter Affected_Rows contains the number of rows affected by the last query.

State and SqlCode do contain the result code of the last query. The SqlCode should not be used any more
because the State information contains more information.

The field Message contains a string generated by the underlying dbcs containing information bout the
most recent error.

32

Chapter 11. Embedded SQL Syntax Specification

Connection Handling
In order to connect to a data base, the data base identifier to be used has to be defined first. This identifier
is a simple name which may be used in the AT clause of an embedded SQL statement and is declared by
means of the "declare_db_clause". This clause will insert at the source where the clause is invoked a Ada
statement declaring a connection object.

Syntax:

<connect_clause > ::=
CONNECT [user]

[BY <Connection >]
[TO <db_name>]
[AS <name>]
[IDENTIFIED BY <password >]

[ON [COMMUNICATION|ATHORIZATION|OTHER] ERROR
[RAISE|GOTO|DO] <target >]

<declare_db_clause > ::=
DECLARE<name> DATABASE

As shown in the example below, the declare_db_clause may be used in the argument list of a procedure.

Example 11-3. Using DB connections as procedure arguments

procedure Print_Employee(
His_Number : Integer;
EXEC SQL DECLARE DB01x DATABASE) is
--
...........
--

begin
empno := INT(His_Number);

EXEC SQL WHENEVER NOT FOUND DO Not_Found;

EXEC SQL AT DB01x
SELECT NAME, DEPTNO INTO :name, :depno

FROM employees
WHERE EMPNO = :empno ;

.....................

33

Chapter 11. Embedded SQL Syntax Specification

end Print_Employee;

This construct allows to write library packages using data base connections as arguments.

The ’ON’ clause is used to define the handling of errors which may occure during connection. Please
note, that the execution of a procedure is straigth forward, which means after the procedure returns the
execution continues after the connect statement!

Implementation Note: The data base connection variable inserted by this statement has the name
GNADE_DB_<db_name> and is of the type ESQL_Support.CONNECTION_Handle. Such a name
should never be used in the application code.

Cursor Handling
A cursor is a declares a SQL query with its input and result parameters. The result set is created when the
cursor is opened. The syntax for declaring, opening and closing a cursor is shown below.

’DECLARE’ <name> [’REOPENABLE’ | ’LOCAL’] ’CURSOR’
’FOR’ <sql query >

’OPEN’ <name>
’CLOSE’ <name> [’FINAL’]

LOCAL cursors are only defined within the scope of the block where the nearest DECLARE section is.
If the scope is left, the cursor and the associated result set are deleted.

Example 11-4. Local Cursors

As shown in the example below, the cursor emp_cursor will only be valid in the scope of the procedure
Print_Departement:

procedure Print_Departement(..........
... departement : in Integer) is

EXEC SQL BEGIN DECLARE SECTION ;
....
Depno : INT := INT(Departement);
....
EXEC SQL END DECLARE SECTION ;

begin

34

Chapter 11. Embedded SQL Syntax Specification

EXEC SQL AT DB01
DECLARE emp_cursor LOCAL CURSOR FOR

SELECT EMPNO, FIRSTNAME, NAME, JOB, MANAGER, SALARY
FROM employees
WHERE deptno = :Depno ORDER BY EMPNO, NAME;
.......

Normally it is not possible to open the same cursor twice. The type REOPENABLE has been introduced,
in order to allow the recursive opening of cursors. This feature may also be emulated by means of
recursive procedures with local cursors.

If the cursor type is omitted the cursor and its associated result set to exist only once.

Mixing ODBC and embedded SQLcode
In order to allow mixed use of ODBC and ESQL constructs to access the ODBC handles has been added
to the translator. The construct below allows to access either the statement handle or the connection
handle of the specified data base name.

<include_handle > ::=
’INCLUDE’

{ ’STATEMENT’ ’HANDLE’ [<cursor >] |
’CONNECTION’ ’HANDLE’ }

’OF’ [<dbname>]

In case of the statement handle, the name of the cursor may be specified. If no cursor is given, the
statement handle of the last query will be returned.

Example 11-5. Accessing ODBC handles

H : SQLHSTMT;
C : SQLHDBC ;
...
EXEC SQL AT DB01x

SELECT LOCATION INTO :dep_location
FROM DEPARTMENTS
WHERE DEPTNO = :depno ;

......

- get the ODBC handles

35

Chapter 11. Embedded SQL Syntax Specification

H := EXEC SQL INCLUDE STATEMENT HANDLE OF DB01x ;
C := EXEC SQL INCLUDE CONNECTION HANDLE OF DB01x ;

Dynamic SQL
Currently only the syntax for dynamic SQL is supported. The idea of dynamic SQL is that the
application can generate a query by generating a string. This query is executed by the data base and the
application may access the result set. This can be achieved by either using the ODBC bindings directly
or by using the dynamic SQL constructs as they are provided by the embedded SQL translator.

The name of a statement (<statement_name>) is defined in a DECLARE clause. Each dynamic SQL
command is identified by such a name.

As for ODBC, the esql translator provides a prepare and an execute method. With the prepare clause the
query is sent to the underlying data base system, but no result set is yet created. This very much
comparable with declaring a cursor. After the query has been prepared, the query is executed by means
of the execute clause.

<dynamic sql clause > ::=
<prepare clause >

| <execute clause >

;

The prepare clause takes as input the statement name and the query string, which is simply a Ada 95
string variable. Any parameters in the query are marked by means of a ’?’ character. The host variables
of the parameters are listed in the USING clause the the prepare statement.

<prepare clause > ::=
’PREPARE’ <statement_name >

’FROM’ { <name> | <string > }
[’USING’ <hostvars >]

;

The execute clause takes the name of the statement as input for execution. If the USING section in the
prepare clause was not included, the parameters of the statement may be assigned latest at this point via
the USING clause in this statement.

<execute_clause > ::=
’EXECUTE’ <statement_name >

36

Chapter 11. Embedded SQL Syntax Specification

[’USING’ <hostvars >]
;

The result set of the execute is accessed via the FETCH clause as for normal cursors.

Example 11-6. Using dynamic SQL

EXEC SQL END DECLARE SECTION END-EXEC

EXEC SQL DECLARE test_sql STATEMENT ;

S : constant String := "SELECT NAME FROM employees WHERE EMPNO = ?";

begin

EXEC SQL CONNECT $DBUSER
IDENTIFIED BY $DBPASSWD
BY DB01
TO $DBSOURCE ;

EXEC SQL AT DB01
PREPARE test_sql
FROM S
USING :EMPNO ;

EMPNO := 5;
EXEC SQL AT DB01

EXECUTE test_sql
USING :NAME :NAME_IND ;

loop
EXEC SQL AT DB01

FETCH USING STATEMENT test_sql
INTO :name :name_ind ;

exit when SQLCODE in SQL_STANDARD.NOT_FOUND;

Put_Line("Result " & To_String(name));
end loop;

37

Chapter 11. Embedded SQL Syntax Specification

GNADE Specific Datatypes
The GNADE ESQL translator supports implementation defined data types as e.g. VARCHAR in order to
simplify the implementation of Ada 95 applications. The specifications of these types is done in the
SQL_STANDARD.GNADE package.

<GNADE impl. specific types > ::=
’VARCHAR (’ <max> ’)’,

| ’VARBINARY (’ <max> ’)’
;

The type VARCHAR is used to handle strings with variable length. The descriminant in the
VHARCHAR type specifies the maximal size of a string.

The application programmer may use the operations Is_Null and Length to figure out if the variable
contains data and the length of the data.

An application example is shown below. Additional examples may found in the samples/esql directory.

Example 11-7. Using VARCHAR

with Ada.Strings; use Ada.Strings;
with sql_standard; use sql_standard;
with gnu.db.esql_Support; use gnu.db.esql_support;
use gnu.db;

procedure Test is

val : String := "FIRSTNAME";

- declare host and program variables
EXEC SQL BEGIN DECLARE SECTION;

ENAME : GNADE.VARCHAR(50);
EMPNO : sql_standard.int;

SQLCODE : sql_standard.sqlcode_type; - for ANSI mode
SQLSTATE : sql_standard.sqlstate_type; - ANSI mode

tt : GNADE.VARCHAR (50);

EXEC SQL END DECLARE SECTION;

38

Chapter 11. Embedded SQL Syntax Specification

SQL_ERROR : exception;
SQL_WARNING : exception;

begin
EXEC SQL CONNECT $DBUSER

IDENTIFIED BY $DBPASSWD
TO $DBSOURCE ;

To_VARCHAR("Michael", tt);

EXEC SQL
SELECT empno, name
INTO :EMPNO, :ENAME
FROM employees
WHERE FIRSTNAME = :tt

;

Put_Line("empno : " & Integer’Image(Integer(empno)));
Put_Line("found name : " & To_String(ename));

end Test;

39

Chapter 12. The ESQL Translator

Compilation Process
A ESQL module is either a package or a file containing only a single compilation unit (procedure). The
file containing the Ada 95 code is read in by the translator which translates all ESQL statements into Ada
95 statements.

The name of the output file is generated by replacing the extension of the file name with ".adb". Any
extension may be used, but by convention the extension ".adq" is used.

If you are using make, add the following lines to your makefile and process works automatically.

.SUFFIXES: .adb .adq

ESQL=esql

.adq.adb:
$(ESQL) $(ESQLFLAGS) $*.adq

The resulting adb file has to be compiled as it is well known using the GNAT.

Implementation Note: The generated code is based on a support package, which is used to
interface with ODBC. All object names generated by the translator begin with the string GNADE_. It
is strongly recommended to avoid such names in the application code in order to avoid an conflicts.

Invocation of the GNU ESQL Translator (gesql)

gesql [-pedantic] [-debugcode] [-iso92] [-nosqlstate] [-limit number] [-schema
file] [-debug] [-v] [-s] [-h, –help]file ...

The command translates embedded SQL statement into Ada 95 for the give input file(s) and writes out
for each input file an Ada 95 output file by replacing the extension of the input file by ".adb".

Table 12-1. Options

40

Chapter 12. The ESQL Translator

-pedantic The translator will complain about non ISO/92
constructs, even if they are supported. Default is
off.

-debugcode If this switch is set, debug code is inserted after
each query. Default is off.

-iso92 If set, a whenever clause is always active till the
next whenever clause. The default is off.

-nosqlstate If set, the SQLSTATE and SQLCODE variable
is not inserted automatically any more. This
switch might be used to minimize the porting
effort for PRO*Ada™ code.

-limit number Set the maximum number of error before the
translator terminates.

-debug If this switch is set, the esql translator outputs
debugging information. This output should be
sent in with bug reports. Default is off.

-s No copyright messages are printed at all.

-v Verbose mode

-schema file If the embedded SQL code contains declare
table clauses, the table declaration is mapped
into a SQL create table command. This switch is
valid for all files compiled after wards.

-compiler name This switch allows to set the desired target
compiler. The allowed compiler names are shown
in the online help shown, when the translator is
started without any argument. If not set always
the GNAT compiler is assumed as target. This
switch has currently no influence on the
generated code.

41

III. ODBC bindings for Ada 95

42

Chapter 13. Introduction to ODBC
The ODBC interface provides an interface between applications and an underlying data base in such a
way, that the application code does not depend on the underlying data base.

The ODBC interface consists of a so called driver manager and the ODBC driver it self. The driver
manager (DM) is a library that on one site offers the specified ODBC API to applications. The DM
therefore is what you essentially link to your application. But in large parts the DM routines are only
stubs. At run time the DM decides which database to access and based on the type of the database which
vendors database ODBC driver to load. So basically most DM implementations require that the OS
supports dynamic linking and that the database vendors provide the database site of the ODBC drivers as
dynamic loadable entity (aka DLL or shared libraries). But the DM does more than just to provide these
stubs and the dynamic linking of the corresponding implementations. As ODBC evolves over time, the
DM is also responsible to handle the situation that with a new version of ODBC new API entries are
defined, but they are not available in a database driver because this driver was developed when an earlier
version of ODBC was the rule (for example we now have ODBC 3.52 and the MySQL ODBC driver is
written for ODBC 2.5x). So an application might link against an ODBC 3.52 DM and use all the new and
hot ODBC entries, although the database used doesn’t have them in its ODBC driver. The DM usually
reacts in one of two ways:

• it raises an error indicating an unsupported call.

• it emulates the new call by translating it to a previous (maybe deprecated) call or series of calls.
Funny enough this happens quite often and the way how to emulate a new call by existing ones is in
most cases exactly described in the ODBC spec.

The mechanism how to select the right driver is system dependent, but the principal idea is that you have
some kind of repository where you associate logical names with configuration information telling the
DM the specifics which driver to load. On Win32 this repository can be the registry or so called
DSN-files, on UNIX this is mostly an ODBC.INI file containing the information in some structured
fashion. The application opens the database by specifying such a logical name and its the task of the DM
to consult the repository and to dynamically load the right database driver. In this way, a carefully written
application can not only be written in a database independent fashion (using the ODBC API), but also
the resulting binary can be dynamically configured to use different databases. This is what makes ODBC
so successful on Win32 and will make it more and more important also on UNICes. You can write very
generic data aware code ranging from applications like MS Access that can operate on any database that
supports ODBC, to GUI widgets like data grids that you can incorporate into your GUI application and
that binds "magically" to nearly any database you want.

The database ODBC driver is typically a sharable object that implements the ODBC interface on the
database site and is loaded by the DM. In theory - although quite uncommon - you may link such a driver
directly to your application. This will work if your application makes only ODBC calls that are

43

Chapter 13. Introduction to ODBC

implemented by the ODBC version used when writing the database driver. Your application then is
written in a database independent fashion, but the binary is bound to a specific database.

44

Chapter 14. Using the Ada 95 ODBC
Bindings

General remarks
The ODBC binding for Ada 95 presented in this project is a thin binding to the ODBC interface
following the naming conventions of ODBC which means most of the commonly available code
examples may be applied to Ada 95 only with minor changes due to the fact, that C and Ada 95 are
completely different languages.

Therefore we will not describe the ODBC API here in detail. Please read the original documentation
from Microsoft or any other source you can find. We will discuss here only the binding specific aspects.

A minimal odbc example
A code fragments of minimal ODBC program are shown below. The code fragment consists of three
basic sections, the initialization code, the connections to the data base and the query it self (the source
code is found in the samples/odbc directory).

Example 14-1. Preparing data of the ODBC driver

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, EnvironmentHandle);
SQLSetEnvAttr (EnvironmentHandle, Environment_Attribute_ODBC_Version’

(Attribute => SQL_ATTR_ODBC_VERSION,
Value => SQL_OV_ODBC3));

SQLAllocHandle (SQL_HANDLE_DBC, EnvironmentHandle, ConnectionHandle);

This section connects to the data base. In this case named by the name "gnade" with the password
"gnade".

Example 14-2. Connecting to the data base via ODBC

SQLConnect (ConnectionHandle => ConnectionHandle,
ServerName => "DEMO_DB",
UserName => "gnade",
Authentication => "gnade");

45

Chapter 14. Using the Ada 95 ODBC Bindings

After the connection has been established, the query has to be done. Let us assume a query like:

SELECT name, firstname
FROM employees
WHERE manager = :name;

Assuming this query, the query will be sent to the dbcs by means of the SQLPrepare method. This will
not create any result set, but it binds the command to the previously allocated statement handle.

Example 14-3. Preparing the Query via ODBC

declare
......
Name, Firstname : aliased Name_String;
Len_Firstname, Len_Name : aliased SQLINTEGER;

begin
SQLAllocHandle (SQL_HANDLE_STMT, ConnectionHandle, StatementHandle);
SQLPrepare (StatementHandle,

"SELECT " & QuoteIdentifier ("name") & ", " &
QuoteIdentifier ("firstname") &
" FROM " & QuoteIdentifier ("employees") & " " &
"WHERE " & QuoteIdentifier ("manager") & " = ? " &
"ORDER BY " & QuoteIdentifier ("name") & "," &
QuoteIdentifier ("firstname"));

Example 14-4. Using host variable with ODBC

The host variable :name is substituted by a ’?’ sign in the query and the Ada 95 variable
"Search_Manager".

The columns name and first name of the query are bound the the Ada 95 host variable Name and
Firstname.

MB.SQLBindParameter (StatementHandle, 1, SQL_PARAM_INPUT,
SQL_C_SLONG, SQL_INTEGER, 0,
0, Search_Manager’Access,
0, Len’Access);

SB.SQLBindCol (StatementHandle, 1, SQL_C_CHAR,
Name’Access, Name’Length, Len_Name’Access);

SB.SQLBindCol (StatementHandle, 2, SQL_C_CHAR,
Firstname’Access, Firstname’Length,

46

Chapter 14. Using the Ada 95 ODBC Bindings

Len_Firstname’Access);

Example 14-5. Creating the result set for a query

Finally the result set is created by executing the query at the data base.

SQLExecute (StatementHandle);

Example 14-6. Fetching data of the result set via ODBC

The following section reads in one result tuple after the other by means of the SQLFetch method. The
result is stored in the host variable which have been specified in the SQLBindCol methods in the
previous steps.

declare
EndFlag : Boolean := False;

begin
loop

exit when EndFlag;
SQLFetch (StatementHandle);
SQLFixNTS (String (Name), Len_Name);
SQLFixNTS (String (Firstname), Len_Firstname);
Put (String (Name (1 .. Integer (Len_Name))));
Put (", ");
Put (String (Firstname (1 .. Integer (Len_Firstname))));
New_Line;

end loop;
exception

when No_Data => EndFlag := True;
end;

end;

After the result set has been processed, the we disconnect from the data base and return all held resources
to the odbc driver.

SQLCommit (ConnectionHandle);
SQLDisconnect (ConnectionHandle);

SQLFreeHandle (SQL_HANDLE_DBC, ConnectionHandle);
SQLFreeHandle (SQL_HANDLE_ENV, EnvironmentHandle);

47

Chapter 14. Using the Ada 95 ODBC Bindings

Implemented ODBC methods
The methods exported by the odbc packages do follow the same naming conventions as the ODBC
standard. The methods listed below are implemented in this release.

SQLAllocHandle
SQLBindCol
SQLBindParameter
SQLCancel
SQLCloseCursor
SQLColumns
SQLConnect
SQLCopyDesc
SQLDescribeCol
SQLDisconnect
SQLEndTran
SQL_Error_Message
SQLExecDirect
SQLExecute
SQLFetch
SQLFetchScroll
SQLFreeHandle
SQLFreeStmt
SQLGetConnectAttr
SQLGetCursorName
SQLGetData
SQLGetDiagField
SQLGetDiagRec
SQLGetEnvAttr
SQLGetFunctions
SQLGetInfo
SQLGetStmtAttr
SQLGetTypeInfo
SQL_LEN_BINARY_ATTR
SQL_LEN_DATA_AT_EXEC
SQLNativeSql
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPutData

48

Chapter 14. Using the Ada 95 ODBC Bindings

SQLRowCount
SQLSetEnvAttr
SQLSpecialColumns
SQLStatistics
SQLTables

49

Chapter 15. Building ODBC based
programs
The root package of the ODBC binding is GNU.DB.SQLCLI. We’ve chosen the name SQLCLI to
indicate that our main focus is to implement at least the Command Level Interface (CLI) of SQL/92.
ODBC is an enhanced implementation of CLI.

Depending on your platform you must add the path to the package sources and the compiled files to you
ADA_INCLUDE_PATH and ADA_OBJECTS_PATH. If you’re using a platform that supports shared
libraries, the libadaodbc.so file should be in a directory searched by your dynamic linker automatically or
you must add the directory containing this file to your LD_LIBRARY_PATH.

The ODBC binding references the calls offered by an ODBC driver manager. The GNADE project
doesn’t implement its own driver manager, but it relies on the one you are using on your system. Please
consult your system documentation to find the name of the library that implements the driver manager.

On Linux we suggest to use the unixODBC driver manager (http://www.unixodbc.org). If you use this
one, you have to add "-largs -lodbc" to your gnatmake arguments if you want to compile an ODBC
program.

50

Chapter 16. Ada95 aspects of the ODBC
binding
The ODBC API typically maintains a set of resources on behalf of the calling application, such as an
ODBC Environment, Connections, Statements etc. All those resources have attributes that can be set or
get by an application. These attributes have different data types.

As a rather low level API ODBC is oriented to wards low level languages like C. For the above
mentioned access to the attributes of various resources the API implements calls in such a way that you
have to specify a pointer to a chunk of memory and a parameter containing the length of this area in
bytes and then the API fills the area of memory with data or reads data from the area. It’s up to the caller
to make sure that the so described memory area contains valid data of a type expected by the call. A "C"
language prototype of a typical call of this category looks like this:

SQLRETURN SQLGetConnectAttr(
SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER Value,
SQLINTEGER BufferLength,
SQLINTEGER *StringLength);

SQLRETURN SQLSetConnectAttr(
SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER Value,
SQLINTEGER StringLength);

The parameter "Attribute" is actually an enumeration. An integer number denotes the attribute you’re
interested in. Different attributes have different data types and there is no rule for the mapping of
attributes to their type. You have to read the documentation!

We think this is not the level of type safety we should provide to Ada95 clients of this API. We therefore
implemented the following scheme to deal with this mapping problem. We will not describe the internals
of this scheme here, but how to use it in your application.

The core of the mapping mechanism is the generic package GNU.DB.SQLCLI.Dispatch which you
never will instantiate directly. Lets for example take the connection attributes of the ODBC API to
demonstrate the use. You’ll find the connection attribute handling in the package
GNU.DB.SQLCLI.Connection_Attribute. What you find there is an enumeration type named
SQL_CONNECTION_ATTRIBUTE. This type represents the plain SQLINTEGER parameter of the
above mentioned C API call. In this package you’ll find these instantiations:

package Connection_Attributes is

51

Chapter 16. Ada95 aspects of the ODBC binding

new GNU.DB.SQLCLI.Generic_Attr (Context => SQLHDBC,
T => SQL_CONNECTION_ATTRIBUTE,
Base => SQLINTEGER,
Get => Get_Connect_Attr,
Set => Set_Connect_Attr,
Default_Context => Null_Handle);

subtype Connection_Attribute is
Connection_Attributes.Attribute_Value_Pair;

package Dispatch is new GNU.DB.SQLCLI (Connection_Attribute);

The generic package GNU.DB.SQLCLI.Generic_Attr defines an abstract tagged type
Attribute_Value_Pair. This type has a single component: "Attribute", which is of the enumeration type to
be mapped (formal parameter T in the above instantiation). There exist derived types from this abstract
type for the various data types that are possible as attributes (bitmap, boolean, boolean_string, context,
enumerated, integer, pointer, string, unsigned). All these derived types add one additional component to
the abstract base type: "Value" whose type is selected according to the needs of the attribute to be
mapped.

The dispatch package has the instantiation of the generic as parameter and does set up internally all
mappings necessary to return a correctly typed Attribute_Value_Pair’Class for an attribute enumeration
value. The C API calls now translate into these Ada95 calls:

function SQLGetConnectAttr
(ConnectionHandle : SQLHDBC;

Attribute : SQL_CONNECTION_ATTRIBUTE;
MaxLength : SQLSMALLINT := SQL_MAX_OPTION_STRING_LENGTH)

return Connection_Attribute’Class;

procedure SQLSetConnectAttr
(ConnectionHandle : in SQLHDBC;

AttrRec : in Connection_Attribute’Class);

If you look into the package GNU.DB.SQLCLI.Connection_Attribute you for example find there this
definition

type ACCESS_MODE is (SQL_MODE_READ_WRITE,
SQL_MODE_READ_ONLY);

for ACCESS_MODE’Size use SQLINTEGER’Size;

SQL_MODE_DEFAULT : constant ACCESS_MODE := SQL_MODE_READ_WRITE;

package Dsp_Access_Mode is new
Dispatch.A_Enumerated (SQL_ATTR_ACCESS_MODE,

ACCESS_MODE,

52

Chapter 16. Ada95 aspects of the ODBC binding

SQLINTEGER,
"ACCESS_MODE");

subtype Connection_Attribute_Mode is Dsp_Access_Mode.Info;

From this you can see that the connection attribute SQL_ATTR_ACCESS_MODE is mapped to an
enumerated type ACCESS_MODE. So a call to set the access mode looks like this:

SQLSetConnectAttr (connHandle,
Connection_Attribute_Mode’(

Attribute => SQL_ATTR_ACCESS_MODE,
Value => SQL_MODE_READ_ONLY)

);

and a call to get the attribute may look like this:

declare
attr : Connection_Attribute_Mode;

begin
attr := Connection_Attribute_Mode(

SQLGetConnectAttr (connHandle, SQL_ATTR_ACCESS_MODE)
);

end;

Note that the type conversion is required to do the dynamic type check of the function return which
returns a Connection_Attribute’Class value.

You’ll find this technique in these packages:

• GNU.DB.SQLCLI.Info

• GNU.DB.SQLCLI.Connection_Attribute

• GNU.DB.SQLCLI.Statement_Attribute

• GNU.DB.SQLCLI.Environment_Attribute

Due to the dynamic type checking implemented for the attribute handling, all calls dealing with attributes
will cost some more cycles than a direct call to the plain C API. All other ODBC calls are a very thin
layer around the C API. As attribute set/get calls are rare compared to queries etc. this is acceptable. But
it explains while a - in theory - thin binding is compiled into a rather huge library. This is because all the
type mapping information is compiled into the library.

53

IV. Native Bindings

54

Chapter 17. Introduction to native
bindings
The GNADE project supplies bindings to client libraries of commonly known data bases systems. The
intention of bindings is often to provide an API which reflects special features of a data base. There for
there is currently no unified interface for all data base bindings available.

55

Chapter 18. MySQL bindings
The following example is stored under ./samples/mysql. It requires the installed client libraries of the
MySQL product.

The MYSQL API
An instance of the MySQL.Object type represents the data base on application level. All operations on
the data base are performed on this data type.

Each issued query is identified by a query id which issued to refer to the query.

Every program has to connect and authorize at the data base. This is done by the Methods User,
Password and Connect as shown in the example below.

The data base is selected by the primitive Select_DB.

Example 18-1. MySQL native binding - Connecting to the database.

with GNU.DB.MySQL; use GNU.DB.MySQL;
with GNU.DB; use GNU.DB ;

dBase : MySQL.Object;
qId : MySQL.Query_ID;

begin
Initialize(dBase);

User(dBase, "gnade");
Password(dBase, "");
Connect(dBase, "localhost");

Select_DB(dBase, "testdb");

A query is send by the method Query to the data base. The query string is a normal SQL query or DML
command. The result set of a query is described by a so called query identifier with the type Query_ID.
The result set is generated at the time where the Query method is executed.

56

Chapter 18. MySQL bindings

Example 18-2. MySQL native binding - Executing a query

.....
qID := Query(dBase, "select * from Test where id=’Otto’");
Put_Line("Nbr of Rows:" & Integer’Image(Nbr_of_Rows(dBase, qID)));
....

The result set may be reed out by means of the Next method as it is shown below.

Example 18-3. MySQL native binding - Accessing the result set

........
while true loop

declare
Insert_Time : Time;

begin
Nbr_Tuples := Nbr_Tuples + 1;
Put_Line("’" & To_String(String_Field(dBase, qId, "id")) & "’");
Insert_Time := Date_Field(dBase, qID, 2);
Next(dBase, qID);

exception
when Field_Parse_Error =>

Put_Line("Field parse error");
Next(dBase, qID);

when Others =>
raise;

end;
end loop;
.........

After the result set has been processed the query context has to be returned to MySQL via the
Drop_Query method.

If the application intends to disconnect completely, the data base instance should be Finalized as shown
below.

Example 18-4. MySQL native binding - Dropping the query

.....
Drop_Query(dBase, qID);

57

Chapter 18. MySQL bindings

Finalize(dBase);
.....

Building programs with MySQL
The MySQL API stored in the library adamysql uses the client library of MySQL, which means the
following linker options have to be passed to gnatmake:

gnatmake -largs .. L/usr/lib/mysql -ladamysql -lmysqlclient

A sample makefile is stored under ./samples/mysql.

58

Chapter 19. Postgres bindings

59

Appendix A. Frequently asked questions
This section contains the FAQ’s of the GNADE project.

Q: How to handle strings in where clauses
I like to use strings in the WHERE clause of a query, but nothing seems to work.

In such a situation a length indicator is needed. This is done by adding the INDICATOR keyword as
shown below.

Example A-1. Using a string in the WHERE clause

EXEC SQL BEGIN DECLARE SECTION END-EXEC
firstname : CHAR(1..80);
..

EXEC SQL END DECLARE SECTION END-EXEC

move(name, firstname);
namelength := INDICATOR_TYPE(name’Legnth);

SELECT
number,
...............
contact_postcode, contact_country

INTO
:stu_number,
...............
:stu_contact_postcode, :stu_contact_country

FROM STUDENT
WHERE name_first = :firstname INDICATOR :namelength

Since GNADE version 1.1.9 the data type VARCHAR has been introduced which already includes the
length indicator.

Q: How to handle connection failures
Intercept the DATABASE_ERROR exception as shown below.

60

Appendix A. Frequently asked questions

Example A-2. Intercpetion connection errors

begin

EXEC SQL CONNECT $DBUSER
IDENTIFIED BY $DBPASSWD
BY DB01
TO $DBSOURCE ; - Hallo Test

...............
exception

when GNU.DB.SQLCLI.DATABASE_ERROR =>
Put_Line("Connection Error");
.....................

when Others =>
raise;

In addition GNADE esql provide the ON clause in the CONNECT statement which allows to intercept
communication and authorization errors.

61

Appendix B. The GNU.DB Packages

GNU.DB.ESQL_Support
This package contains procedure and functions common to all data base interfaces used by the gesql.
Most of the functions located in this package are dedicated to the mapping between ISO/92 and Ada 95
data types.

String related type conversion

with SQL_STANDARD; use SQL_STANDARD;
with GNU.DB.ESQL_SUPPORT; use GNU.DB.ESQL_SUPPORT;

function To_String(
Item : in SQL_STANDARD.CHAR) return String;

procedure To_String(
Item : in SQL_STANDARD.CHAR;
Target : out String);

procedure Move(
S : in String ;
C : out Sql_Standard.Char);

These function is used to convert between ISO/92 Strings and the Ada String type.

SQL Communication Area
This package contains the definition of the SQL communication area, which is updated after each issued
sql query.

type SQLCA_Type is record
Message : aliased String(1..255);
State : aliased SQLSTATE_TYPE;
SqlCode : aliased SQLCODE_TYPE;

end record;

The field Message contains a string which is generated by the underlying dbcs in case of errors as
informational string. State and SQLCODE contain the result of the last query.

62

Appendix B. The GNU.DB Packages

The state variable is a string of 4 characters. The first 2 characters denote the class of the state. The
constants SUCCESS_CLASS, WARNING_CLASS and NOT-FOUND_CLASS may be used to
distinguish the different error classes as shown below:

if SQLCA.State(1..2) = NOTFOUND_CLASS then
.....

end if;

Exceptions
This package defines some implementation defined exceptions.

Out_Of_Resources : exception ;
No_Reopenable_Cursor : exception ;

The Out_Of_Resources exception is raised by the ESQL_Support module in case where no more internal
resources are available. Normally there is no recovery possible and the application should terminate
cleanly.

The exception No_Reopenable_Cursor is raised, if a cursor is opened which is not declared as reopen
able or local.

ODBC related packages
The packages supporting the ODBC interface ar listed below:

GNU.DB.SQLCLI.Bind
GNU.DB.sqlcli-connection_attribute-debug.ads
GNU.DB.Sqlcli.Connection_attribute
GNU.DB.Sqlcli.Desc
GNU.DB.Sqlcli.Diag
GNU.DB.Sqlcli.Dispatch
GNU.DB.Sqlcli.Environment_attribute-debug
GNU.DB.Sqlcli.Environment_attribute
GNU.DB.Sqlcli.Generic_attr-bitmap_attribute
GNU.DB.Sqlcli.Generic_attr-boolean_attribute
GNU.DB.Sqlcli.Generic_attr-boolean_string_attribute
GNU.DB.Sqlcli.Generic_attr-context_attribute
GNU.DB.Sqlcli.Generic_attr-enumerated_attribute

63

Appendix B. The GNU.DB Packages

GNU.DB.Sqlcli.Generic_attr-integer_attribute
GNU.DB.Sqlcli.Generic_attr-pointer_attribute
GNU.DB.Sqlcli.Generic_attr-string_attribute
GNU.DB.Sqlcli.Generic_attr-unsigned_attribute
GNU.DB.Sqlcli.Generic_attr
GNU.DB.Sqlcli.Info-debug
GNU.DB.Sqlcli.Info
GNU.DB.Sqlcli.Statement_attribute-debug
GNU.DB.Sqlcli.Statement_attribute
GNU.DB.Sqlcli

64

Appendix C. Porting legacy code
This section describes the migration steps for migrating from legacy code to GNADE embedded SQL.
Because only a limited number of ports have been performed this section will evolve over the time.

Migrating from Oracle to GNADE
The Oracle product seems to have a lot of extension compared to ISO/92. Migrating from Oracle to
GNADE using ODBC has to be done manually.

Host variables
All host variables have to be moved into the DECLARE section and the types of these variables has to be
reworked as it is required by ISO/92.

Query Results
The default SQLCA with the name ORACLE does not exist. Due to the fact, that the contents of the
GNADE SQLCA is different this code has to be reworked manually.

Others
The ESQL translator of Oracle supports non ISO/92 WHENEVER clauses which are supported by the
GNU ESQL translator as well.

Due to the fact, that ODBC requires different parameters for the CONNECT clause this has to be
reworked as well.

65

Appendix D. GNU Free Documentation
License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary Section may not

66

Appendix D. GNU Free Documentation License

explain any mathematics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

67

Appendix D. GNU Free Documentation License

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

68

Appendix D. GNU Free Documentation License

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

69

Appendix D. GNU Free Documentation License

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or

70

Appendix D. GNU Free Documentation License

works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an "aggregate", and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original English version will
prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

71

Appendix D. GNU Free Documentation License

number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

72

Appendix E. GNU Public License (GPL)
Version 2

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software-to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and

73

Appendix E. GNU Public License (GPL) Version 2

(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License

74

Appendix E. GNU Public License (GPL) Version 2

along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

75

Appendix E. GNU Public License (GPL) Version 2

with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is

76

Appendix E. GNU Public License (GPL) Version 2

void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made

77

Appendix E. GNU Public License (GPL) Version 2

generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

78

Appendix E. GNU Public License (GPL) Version 2

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

79

