Linux-GPIB 3.2.03 Documentation

Frank Mori Hess

fmhess@users.sourceforge.net

Copyright © 2003, 2004 Frank Mori Hess

1. Copying

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitledbNU Free Documentation License"

Alternatively, you may redistribute and/or modify this document under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

2. Configuration

Configuration of the GPIB library is accomplished through the configuratiorefitégpib.confand the
administration progrargpib_config

gpib.conf

Name
gpib.conf — GPIB library configuration file
Description

The library, and the administration togpib_configread their configuration information from the file
/etc/gpib.conf. A template gpib.conf file can be found in the util/templates/ subdirectory of the linux-gpib

package.

Linux-GPIB 3.2.03 Documentation

The configuration file must contain one or more ’interface’ entries, and can contain zero or more 'device’
entries. 'device’ entries are only required if you wish to open device descriptorsbfiitd() instead of
usingibdev(). Several example entries, and a table summarizing the possible options follow.

interface {

minor = 0
board_type = "ni_pci"
pad = 0

master = yes
}

interface {

minor = 1
board_type = "ines_pci_accel"
name = "joe"

pad = 5

sad = 0

timeout = T10s
pci_bus = 0
pci_slot = 0Oxd
master = no

}

interface {

minor = 2
board_type = "pcll"
pad = 3

sad = 0x62

eos = 0x0d

set-reos = yes
set-bin = no

set-xeos = no
set-eot = yes

base = 0x300
irq =5

dnma =0
master = no

}

device {

minor = 0

name = "counter"
pad = 24

}

device {

minor = 0

name = "voltmeter"
pad = 7

sad = 110

eos = Oxa

set-reos = yes
set-bin = no
set-xeos = yes
set-eot = no
timeout = Tls

Table 1. configuration options

Linux-GPIB 3.2.03 Documentation

option name

description

used by interface or
device entries

required or opti

base

Specifies the base ioport or io
memory address for a board th
lacks plug-and-play capability.

interface
at

optional

board_type

Specifies the type of
interface board. See the
drivers.txt file for a list
of possible board types,
and the kernel driver
module that supports
them.

interface

required

dma

Specifies the dma
channel for a board that
lacks plug-and-play
capability.

interface

optional

eos

Sets the end-of-string
byte for board or device
descriptors obtained
with ibfind(). See also
the set-reos, set-bin, and
set-xeos options.

interface or device

optional

irq

Specifies the interrupt
level for a board that
lacks plug-and-play
capability.

interface

optional

master

Set to 'yes’ if you want
the interface board to be
the system controller of
the bus. There can only
be one system controller
on a bus.

interface

required

Linux-GPIB 3.2.03 Documentation

option name

description

used by interface or
device entries

required or opti

minor

'minor’ specifies the
minor number of the
device file this interface
board will use. A

'minor’ of 0

corresponds to
/dev/gpibO, 1 is
/dev/gpibl, etc. The
minor number is also
equal to the 'board
index’ which can be
used as a board
descriptor, and is passed
as one of the arguments
of ibdev()

interface

required

name

The 'name’ specifies the
name which can be used
with ibfind() to get a
descriptor for the board
or device associated
with this entry.

interface or device

optional

pad

Specifies the primary
GPIB address (valid
addresses are 0 to 30).
For interfaces, this is the
primary address that the
board will be assigned
when it is first brought
online. For devices, this
is address that will be
used by device
descriptors obtained
with ibfind().

interface or device

required

pci_bus

Useful for
distinguishing between
multiple PCI cards. If
you have more than one
PCI card that with the
same 'board_type’, you
can use the 'pci_bus’
and ’'pci_slot’ options to
specify the particular
card you are interested
in.

interface

optional

Linux-GPIB 3.2.03 Documentation

option name

description

used by interface or
device entries

required or opti

pci_slot

Can be used in
conjunction with
'pci_bus’ to specify a
particular pci card.

interface

optional

sad

Specifies the secondary
GPIB address. Valid
values are 0, or 0x60 to
0x7e hexadecimal (96 to
126 decimal). A value

of 0 means secondary
addressing is disabled
(the default). Secondary
addresses from 0 to 30
are specified by the
library’s convention of
adding an offset of
0x60.

interface or device

optional

set-bin

Enables 8-bit
comparisons when
matching the
end-of-string byte,
instead of only
comparing the 7 least
significant bits. Only
affects descriptors
returned by ibfind(), and
has same effect as
setting the BIN bitin a
ibeos()call.

interface or device

optional

set-eot

Enables assertion of the
EOI line at the end of
writes, for descriptors
returned by ibfind(). See
ibeot().

interface or device

optional

set-reos

Enables the termination
of reads on reception of
the end-of-string byte
for descriptors returned
by ibfind(). Same as
setting the REOS bit in
aibeos()call.

interface or device

optional

Linux-GPIB 3.2.03 Documentation

option name

description

used by interface or
device entries

required or opti

set-xeos

Enables the assertion of
EOI on transmission of
the end-of-string byte
for descriptors returned
by ibfind(). Same as
setting the XEOS bit in
aibeos()call.

interface or device

optional

timeout

Sets the io timeout for a
board or device
descriptor opened
through ibfind(). The
possible settings are the
same as the constants
used hyibtmo().

interface or device

optional

gpib_config

Name
gpib_config

Synopsis

gpib_config [--minor number]

— GPIB administration program

gpib_config [--board-typeboard _type] [--dmanumber] [--file file_path] [--iObase
number] [--ifc] [--no-ifc] [--irq number] [--minor number] [--pad number] [--pci-bus

number] [--pci-slot number] [--sad
number] [--sre] [--no-sre] [--system-controller] [--no-system-controller]

Description

gpib_config must be run after the kernel driver module for a GPIB interface board is loaded. It performs

configuration of driver settings that cannot be performed by libgpib at runtime. This includes

configuration which requires root privilege (for example, setting the base address or irq of a board), and

Linux-GPIB 3.2.03 Documentation

configuration which should only be performed once and not automatically redone every time a program
using libgpib is run (for example, setting the board’s GPIB address).

The board to be configured by gpib_config is selected by-thieor option. By default, the board
settings are read from thgpib.confconfiguration file. However, individual settings can be overiden by
use of command-line options (see below).

Options

-b, --iobase number

Set io base addresstamber for boards without plug-and-play cabability.
-d, --dma number

Specify isa dma channelmber for boards without plug-and-play cabability.
-i, --irq number

Specify irq linenumber for boards without plug-and-play cabability.

-f, -file file_path

Specify file path for configuration file. The values in the configuration file will be used as defaults for
unspecified options. The default configuration file is "/etc/gpib.conf".

-h, --help
Print help on options and exit.
-l, --pci-slot number

Specify pci slohumber to select a specific pci board. If used, you must also specify the pci bus with
--pci-bus

-m, --minor number

Configure gpib device file with minor numbeamber (default is 0).

Linux-GPIB 3.2.03 Documentation

-p, --pad number

Specify primary gpib addressumber should be in the range 0 through 30.

-s, --sad number

Specify secondary gpib addreasmber should be 0 (disabled) or in the range 96 through 126 (0x60
through 0x7e hexadecimal).

-t, --board-type board_type

Set board type tboard_type

-u, --pci-bus number

Specify pci busrumber to select a specific pci board. If used, you must also specify the pci slot with
--pci-slot

--[no-Jifc

Perform (or not) interface clear after bringing board online. Defautifts

--[no-]sre

Assert (or not) remote enable line after bringing board online. Defaulrs .

--[no-]system-controller

Configure board as system controller (or not).

Linux-GPIB 3.2.03 Documentation

3. Supported Hardware

3.1. Supported Hardware Matrix

Table 2. Linux-GPIB Supported Hardware Matrix

make model kernel driver module |board_type (for
/etc/gpib.conf)

Agilent 82350B agilent_82350b.ko agilent_82350b

Agilent 82357A agilent_82357a.ko agilent_82357a

Capital Equipment PC-488 pc2_gpib.ko pcll

Corporation

Capital Equipment PCI-488 cec_gpib.ko cec_pci

Corporation

CONTEC GP-IB(PC) pc2_gpib.ko pclla

Hewlett Packard HP82335 hp82335.ko hp82335

Hewlett Packard HP27209 hp82335.ko hp82335

Ines GPIB for Compact PCI|ines_gpib.ko ines_pci, ines_pci_accel

Ines GPIB for PCI ines_gpib.ko ines_pci, ines_pci_accel

Ines GPIB for PCMCIA ines_gpib.ko ines_pcmcia,
ines_pcmcia_accel

lotech GP488B pc2_gpib.ko pclla

Keithley KPCI-488 cec_gpib.ko cec_pci

Keithley MBC-488 pc2_gpib.ko pcll

Measurement CPCI-GPIB cb7210.ko cbi_pci, chi_pci_accel

Computing (Computer

Boards)

Measurement ISA-GPIB cb7210.ko cbi_isa, chi_isa_accel

Computing (Computer

Boards)

Measurement ISA-GPIB/LC cb7210.ko cbi_isa

Computing (Computer

Boards)

Measurement ISA-GPIB-PC2A pc2_gpib.ko pclla (nec7210 chip),

Computing (Computer pclla_cb7210 (cb7210

Boards) chip)

Measurement PCI-GPIB/1IM cb7210.ko cbi_pci, chi_pci_accel

Computing (Computer

Boards)

Linux-GPIB 3.2.03 Documentation

make model kernel driver module |board_type (for
/etc/gpib.conf)

Measurement PCI-GPIB/300K ch7210.ko chi_pci

Computing (Computer

Boards)

Measurement PCMCIA-GPIB cb7210.ko cbi_pcmcia,

Computing (Computer cbi_pcmcia_accel

Boards)

National Instruments | AT-GPIB (with tnt4882.ko ni_nat4882_isa,

NAT4882 chip) ni_nat4882 isa_accel
National Instruments | AT-GPIB (with tnt4882.ko ni_nec_isa,
NEC7210 chip) ni_nec_isa_accel

National Instruments | AT-GPIB/TNT tnt4882.ko ni_isa, ni_isa_accel

National Instruments | GPIB-USB-B ni_usb_gpib.ko ni_usb_b

National Instruments | PCI-GPIB tnt4882.ko ni_pci, ni_pci_accel

National Instruments | PCI-GPIB+ tnt4882.ko ni_pci, ni_pci_accel

National Instruments | PCM-GPIB tnt4882.ko ni_pci, ni_pci_accel

National Instruments | PXI-GPIB tnt4882.ko ni_pci, ni_pci_accel

National Instruments | PCII pc2_gpib.ko pcll

National Instruments | PClla pc2_gpib.ko pclla

National Instruments | PCll/lla pc2_gpib.ko pcll or pcll_lla
(depending on board
switch)

National Instruments | PCMCIA-GPIB tnt4882.ko ni_pcmcia,
ni_pcmcia_accel

Quancom PCIGPIB-1 ines_gpib.ko ines_pci, ines_pci_accel

3.2. Board-Specific Notes

3.2.1. Agilent 82350B

The Agilent 82350B does not support detection of an end-of-string character in hardware, it only

automatically detects the when the EOI line is asserted. Thus if you use the REOS flag for a read, the
board’s fifos will not be used for the transfer. This will greatly reduce the maximum transfer rate for your

board (which may or may not be noticeable depending on the device you are reading from).

10

Linux-GPIB 3.2.03 Documentation

3.2.2. Agilent 82357A

The Agilent 82357A has a few limitations due to its firmware code:

« It cannot be run as a device, it must be the system controller.
- It cannot be assigned a seconday address.

- It cannot do 7 bit compares when looking for the end-of-string character (it always compares all 8
bits).

4. Linux-GPIB Reference

Reference for libgpib functions, macros, and constants.
4.1. Global Variables

ibcnt and ibcntl

Name
ibcnt and ibentl — hold number of bytes transferred, or errno

Synopsis
#include <gpib/ib.h >

volatile int ibcnt;
volatile long ibcntl;

Description

ibcnt and ibentl are set after 1O operations to the the the number of bytes sent or received. They are also
set to the value of errno after EDVR or EFSO errors.

If you wish to avoid using a global variable, you may instead Tiseeadlbcnt() or Threadlbentlgyhich
return thread-specific values.

11

iberr

Name
iberr — holds error code

Synopsis
#include <gpib/ib.h >

volatile int iberr;

Description

Linux-GPIB 3.2.03 Documentation

iberr is set whenever a function from the ‘traditional’ or 'multidevice’ API fails with an error. The
meaning of each possible value of iberr is summarized in the following table:

Table 1. iberr error codes

constant

value

meaning

EDVR

A system call has failed.
ibent/ibentl will be set to the
value of errno.

ECIC

Your interface board needs to b
controller-in-charge, but is not.

ENOL

You have attempted to write dat

EADR

The interface board has failed t
address itself properly before
starting an io operation.

a
or command bytes, but there are
no listeners currently addressed.

o]

EARG

One or more arguments to the
function call were invalid.

ESAC

The interface board needs to bg

D

system controller, but is not.

12

Linux-GPIB 3.2.03 Documentation

constant

value

meaning

EABO

A read or write of data bytes hal
been aborted, possibly due to g
timeout or reception of a device
clear command.

%)

ENEB

The GPIB interface board does
not exist, its driver is not loaded
or it is not configured properly.

EDMA

Not used (DMA error), included
for compatibility purposes.

EOIP

10

Function call can not proceed
due to an asynchronous 10
operation (ibrda(), ibwrta(), or
ibcmda()) in progress.

ECAP

11

Incapable of executing function
call, due the GPIB board lackin
the capability, or the capability

being disabled in software.

EFSO

12

File system error. ibcnt/ibentl
will be set to the value of errno.

EBUS

14

An attempt to write command
bytes to the bus has timed out.

ESTB

15

One or more serial poll status
bytes have been lost. This can
occur due to too many status
bytes accumulating (through
automatic serial polling) withou
being read.

ESRQ

16

The serial poll request service
line is stuck on. This can occur
a physical device on the bus
requests service, but its GPIB

ibdev() for example) by any
process. Thus the automatic
serial polling routines are
unaware of the device’s existen
and will never serial poll it.

address has not been opened (Vi

if

ce

ETAB

20

This error can be returned by
ibevent() FindLstn(), or
FindRQS(). See their
descriptions for more
information.

13

Linux-GPIB 3.2.03 Documentation

If you wish to avoid using a global variable, you may instead Tiseadlberr(which returns a
thread-specific value.

ibsta

Name
ibsta — holds status

Synopsis
#include <gpib/ib.h >

volatile int ibsta;

Description

ibsta is set whenever a function from the 'traditional’ or ‘'multidevice’ APl is called. Each of the bits in
ibsta has a different meaning, summarized in the following table:

Table 1. ibsta Bits

bit value (hexadecimal) | meaning used for
board/device

14

Linux-GPIB 3.2.03 Documentation

bit value (hexadecimal) | meaning used for
board/device
DCAS 0x1 DCAS issetwhena |board

board receives the
device clear command
(that is, the SDC or
DCL command bytg It
is cleared on the next
‘traditional’ or
'multidevice’ function
call following ibwait()
(with DCAS set in the
wait mask), or following
a read or write (ibrd(),
ibwrt(), Receive(), etc.)
The DCAS and DTAS
bits will only be set if
the event queue is
disabled. The event
queue may be disabled
with ibconfig().

DTAS 0x2 DTAS is set when a board
board has received a
device trigger command
(thatis, the GET
command byt It is
cleared on the next
‘traditional’ or
'multidevice’ function
call following ibwait()
(with DTAS in the wait
mask). The DCAS and
DTAS bits will only be
set if the event queue ig
disabled. The event
gueue may be disabled
with ibconfig().

LACS 0x4 Board is currently board
addressed as a listener.

TACS 0x8 Board is currently board
addressed as talker.

ATN 0x10 The ATN line is board
asserted.

15

Linux-GPIB 3.2.03 Documentation

bit value (hexadecimal) | meaning used for
board/device
ciCc 0x20 Board is board

controller-in-charge, so
it is able to set the ATN

line.
REM 0x40 Board is in 'remote’ board
state.
LOK 0x80 Board is in ’lockout’ board
state.
CMPL 0x100 I/O operation is board or device

complete. Useful for
determining when an
asynchronous io
operation (ibrda(),
ibwrta(), etc) has
completed.

EVENT 0x200 One or more clear, board
trigger, or interface clear
events have been
received, and are
available in the event
queue (seéevent().
The EVENT bit will
only be set if the event
gueue is enabled. The
event queue may be
enabled withbconfig().

SPOLL 0x400 If this bit is enabled (segboard
ibconfig()), it is set
when the board is seria|
polled. The SPOLL bit
is cleared when the
board requests service
(see ibrsv()) or you call
ibwait() on the board
with SPOLL in the wait
mask.

16

Linux-GPIB 3.2.03 Documentation

bit value (hexadecimal) | meaning used for
board/device
RQS 0x800 RQS indicates that the | device

device has requested
service, and one or more
status bytes are availahle
for reading with ibrsp().
RQS will only be set if
you have automatic
serial polling enabled
(seeibconfig().

SRQI 0x1000 SROQI indicates thata | board
device connected to the
board is asserting the
SRQ line. Itis only set
if the board is the
controller-in-charge. If
automatic serial polling
is enabled (see
ibconfig()), SRQI will
generally be cleared,
since when a device
requests service it will
be automatically polled
and then unassert SRQ.

END 0x2000 END is set if the last io | board or device
operation ended with the
EOlI line asserted, and
may be set on reception
of the end-of-string
character. The
IbcEndBitlsNormal
option of ibconfig() can
be used to configure
whether or not END
should be set on
reception of the eos
character.

TIMO 0x4000 TIMO indicates that the board or device
last io operation or
ibwait() timed out.

17

Linux-GPIB 3.2.03 Documentation

bit value (hexadecimal) | meaning used for
board/device
ERR 0x8000 ERR is setif the last | board or device

‘traditional’ or
'multidevice’ function
call failed. The global
variableiberrwill be set
indicate the cause of the
error.

If you wish to avoid using a global variable, you may instead Tiseeadlbsta(hich returns a
thread-specific value.

4.2. 'Traditional’ APl Functions

ibask

Name
ibask — query configuration (board or device)

Synopsis

#include <gpib/ib.n >
int ibask (int ud, int option , int * result);

Description

Queries various configuration settings associated with the board or device desatipibeoption
argument specifies the particular setting you wish to query. The result of the query is written to the
location specified byesult . To change the descriptor’s configuration, gemnfig().

Table 1. ibask options

18

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

result of query

used for
board/device

IbaPAD

0ox1

GPIB primary address

board or device

IbaSAD

0x2

GPIB secondary address
(0 for none, 0x60 to

Ox7e for secondary
addresses 0 to 30)

board or device

IbaTMO

0x3

Timeout setting for io
operations (a number
from 0 to 17). See
ibmto().

board or device

IbaEOT

Ox4

Nonzero if EOl is
asserted with last byte
on writes. Seébeot().

IbaPPC

0x5

Parallel poll
configuration. See

ibppc()

board

IbaREADDR

0x6

Useless, included for
compatibility only.

device

IbaAUTOPOLL

0ox7

Nonzero if automatic
serial polling is enabled.

board

IbaCICPROT

0x8

Useless, included for
compatibility only.

board

IbasSC

Oxa

Nonzero if board is
system controller. See
ibrsc().

board

IbaSRE

Oxb

Nonzero if board
autmatically asserts
REN line when it
becomes the system
controller. Seébsre()

board

IbaEOSTId

Oxc

Nonzero if termination

of reads on reception of
the end-of-string
character is enabled. See
ibeos() in particular the
REOS bit.

board or device

IbaEOSwrt

Oxd

Nonzero if EOl is
asserted whenever
end-of-string character
is sent. Seéeos() in
particular the XEOS bit.

board or device

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

result of query

used for
board/device

IbaEOScmp

Oxe

Nonzero if all 8 bits are
used to match
end-of-string character.
Zero if only least
significant 7 bits are
used. Seéeos() in
particular the BIN bit.

board or device

IbaEOSchar

Oxf

The end-of-string byte.

board or device

IbaPP2

0x10

Nonzero if in local
parallel poll configure
mode. Zero if in remote
parallel poll configure
mode.

board

IbaTIMING

Ox11

Number indicating T1
delay. 1 for 2
microseconds, 2 for 500
nanoseconds, 3 for 350
nanoseconds. The
values are declared in
the header files as the
constants
T1_DELAY_2000ns,
T1 DELAY_500ns, and
T1 DELAY_350ns.

board

IbaReadAdjust

0x13

Nonzero if byte pairs are
automatically swapped
during reads.

board or device

IbaWriteAdjust

0x14

Nonzero if byte pairs are
automatically swapped
during writes.

board or device

IbaEventQueue

0x15

Nonzero if event queue
is enabled.

board

IbaSPollBit

0x16

Nonzero if the use of the
SPOLL bit in ibsta is
enabled.

board

IbaSendLLO

0x17

Nonzero if devices
connected to this board
are automatically put
into local lockout mode
when brought online
with ibfind() or ibdev().

board

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

result of query

used for
board/device

IbaSPollTime

0x18

Timeout for serial polls.
The value of the result is
between 0 and 17, and
has the same meaning as
in ibtmo().

device

IbaPPollTime

0x18

Timeout for parallel
polls. The value of the
result is between 0 and
17, and has the same
meaning as iflbtmo().

board

IbaEndBitIsNormal

Oxla

Nonzero if END bit of
ibsta is set on reception
of end-of-string
character or EOI. Zero if
END bit is only set on
EOI.

board or device

IbaUnAddr

Ox1b

Nonzero if UNT

(untalk) and UNL
(unlisten) commands are
automatically sent after
a completed io operation
using this descriptor.

device

IbaHSCablelLength

Oox1f

Useless, included only
for compatibility.

board

Ibalst

0x20

Individual status bit,
a.k.a. 'ist’.

board

IbaRsv

0x21

The current status byte
this board will use to
respond to serial polls.

board

IbaBNA

0x200

Board index (minor
number) of interface
board which is the
controller-in-charge of
this device's GPIB bus.

device

Return value

The value ofibstais returned.

21

Linux-GPIB 3.2.03 Documentation

ibbna

Name
ibbna — change access board (device)

Synopsis

#include <gpib/ib.n >
int ibbna (int ud, const char * name);

Description

ibbna() changes the GPIB interface board used to access the device speaifieBpsequent device

level calls using the descriptad will assume the device is connected to the interface board specified by
name. If you wish to specify a device’s new access board by board index instead of name, you can use
the IbcBNA option of ibconfig().

The name of a board can be specified in the configuratiogile.conf

On success, iberr is set to the board index of the device’s old access board.

Return value

The value ofibstais returned.

ibcac

Name
ibcac — assert ATN (board)

22

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
int ibcac (int ud, int synchronous);

Description

ibcac() causes the board specified by the board descrigtty become active controller by asserting the
ATN line. The board must be controller-in-change in order to assert ATéynfhronous is honzero,

then the board will wait for a data byte on the bus to complete its transfer before asserting ATN. If the
synchronous attempt times out,synchronous is zero, then ATN will be asserted immediately.

Itis generally not necessary to call ibcac(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

Return value

The value ofibstais returned.

Ibclr

Name
ibclr — clear device (device)

Synopsis

#include <gpib/ib.h >
int ibclr (int ud);

Description

ibclr() sends the clear command to the device specifieatby

23

ibcmd

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

Name
ibcmd — write command bytes (board)

Synopsis

#include <gpib/ib.n >
int ibcmd (int ud, const void * commands, long num_bytes);

Description

ibcmd() writes thecommand bytesontained in the arrayommands to the bus. The number of bytes

written from the array is specified byim_bytes . Theud argument is a board descriptor, and the board

must be controller-in-charge. Most of the possible command bytes are declared as constants in the header
files. In particular, the constants GTL, SDC, PPConfig, GET, TCT, LLO, DCL, PPU, SPE, SPD, UNL,
UNT,and PPD are available. Additionally, the inline functions MTA(), MLA(), MSA(), and PPE_byte()

are available for producing 'my talk address’, 'my listen address’, 'my secondary address’, and 'parallel
poll enable’ command bytes respectively.

It is generally not necessary to call ibcmd(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

Return value

The value ofibstais returned.

24

Linux-GPIB 3.2.03 Documentation

ibcmda

Name
ibcmda — write command bytes asynchronously (board)

Synopsis

#include <gpib/ib.n >
int ibcmda (int ud, const void * commands, long num_bytes);

Description

ibcmda() is similar tabcmd() except it operates asynchronously. ibcmda() does not wait for the sending
of the command bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you mugiveait() until the CMPL bit is set
ibsta. Asynchronous operations may also be aborted withstop()or ibonl() call.

Return value

The value ofibstais returned.

ibconfig

Name
ibconfig — change configuration (board or device)

Synopsis

#include <gpib/ib.n >
int ibconfig (int ud, int option , int setting);

25

Linux-GPIB 3.2.03 Documentation

Description

Changes various configuration settings associated with the board or device desdriftoeoption
argument specifies the particular setting you wish to modify.Setting argument specifies the
option’s new configuration. To query the descriptor’s configurationijssesk()

Table 1. ibconfig options

option value (hexadecimal) effect used for
board/device
IbcPAD 0x1 Sets GPIB primary address. | board or device
Same asbpad()
IbcSAD 0x2 Sets GPIB secondary board or device

address. Same #ssad()

IbcTMO 0x3 Sets timeout for io board or device
operations. Same as
ibmto().

IbcEOT 0x4 If setting is nonzero,

EOIl is asserted with last
byte on writes. Same as
ibeot().

IbcPPC 0x5 Sets parallel poll
configuration. Same as

ibppc()

board

IbcREADDR 0x6 Useless, included for
compatibility only.

device

IbcAUTOPOLL 0x7 If setting is nonzero
then automatic serial
polling is enabled.

board

IbcCICPROT 0x8 Useless, included for
compatibility only.

board

IbcSC Oxa If setting is nonzero,
board becomes system
controller. Same as
ibrsc().

board

IbcSRE Oxb If setting is nonzero
then board asserts REN
line. Otherwise REN is
unasserted. Same as
ibsre()

board

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

effect

used for
board/device

IbcEOSId

Oxc

If setting is nonzero then
reads are terminated on
reception of the
end-of-string character.
Seeibeos() in particular
the REOS hit.

board or device

IbcEOSwrt

Oxd

If setting is nonzero
then EOI is asserted
whenever the
end-of-string character
is sent. Se@eos() in
particular the XEOS bit.

board or device

IbcEOScmp

Oxe

If setting is nonzero
then all 8 bits are used
to match the
end-of-string character.
Otherwise only the least
significant 7 bits are
used. Seéeos() in
particular the BIN bit.

board or device

IbcEOSchar

Oxf

Sets the end-of-string
byte. Seabeos()

board or device

IbcPP2

0x10

If setting is nonzero
then the board is put
into local parallel poll
configure mode, and
will not change its
parallel poll
configuration in
response to receiving
'parallel poll enable’
command bytes from
the controller-in-charge.
Otherwise the board is
put in remote parallel
poll configure mode.
Some older hardware
does not support local
parallel poll configure
mode.

board

27

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

effect

used for
board/device

IbcTIMING

Ox11

Sets the T1 delay. Use
setting of 1 for 2
microseconds, 2 for 500
nanoseconds, or 3 for
350 nanoseconds. These
values are declared in
the header files as the
constants

T1 DELAY_2000ns,

T1 DELAY_500ns, and
T1 DELAY_350ns.A?2
microsecond T1 delay is
safest, but will limit
maximum transfer
speeds to a few hundred
kilobytes per second.

board

IbcReadAdjust

0x13

If setting is nonzero
then byte pairs are
automatically swapped
during reads. Presently,
this feature is
unimplemented.

board or device

IbcWriteAdjust

0Ox14

If setting is nonzero
then byte pairs are
automatically swapped
during writes. Presently,
this feature is
unimplemented.

board or device

IbcEventQueue

0x15

If setting is nonzero
then the event queue is
enabled. The event
gueue is disabled by
default.

board

IbcSPollBit

0x16

If the setting is nonzero
then the use of the
SPOLL bitin ibsta is
enabled.

board

IbcSendLLO

ox17

If the setting is nonzero
then devices connected
to this board are
automatically put into
local lockout mode
when brought online
with ibfind() or ibdev().

board

Linux-GPIB 3.2.03 Documentation

option

value (hexadecimal)

effect

used for
board/device

IbcSPollTime

0x18

Sets timeout for serial
polls. The setting must
be between 0 and 17,
which correspond to the
same time periods as in
ibtmo().

device

IbcPPollTime

0x18

Sets timeout for parallel
polls. The setting must
be between 0 and 17,
which correspond to the
same time periods as in
ibtmo().

board

IbcEndBitlsNormal

Oxla

If setting is nonzero then
the END bit of ibsta is
set on reception of the
end-of-string character
or EOI (default).
Otherwise END bit is
only set on EOI.

board or device

IbcUnAddr

Ox1b

If setting is nonzero then
UNT (untalk) and UNL
(unlisten) commands are
automatically sent after
a completed io operation
using this descriptor.
This option is off by
default.

device

IbcHSCableLength

Oox1f

Useless, included only
for compatibility.

board

Ibclst

0x20

Sets the individual
status bit, a.k.a. "ist’.
Same ahist().

board

IbcRsv

0x21

Sets the current status
byte this board will use
to respond to serial
polls. Same a#rsv().

board

29

ibdev

Linux-GPIB 3.2.03 Documentation

option value (hexadecimal) effect used for
board/device
IbcBNA 0x200 Changes the GPIB device

interface board used to
access a device. The
setting specifies the
board index of the new
access board. This
configuration option is
similar toibbna()except
the new board is
specified by its board
index instead of a name.

Return value

The value ofibstais returned.

Name
ibdev — open a device (device)

Synopsis

#include <gpib/ib.n >

int ibdev (int board_index , int pad, int
€o0s);

Description

sad, int

timeout , int send_eoi , int

ibdev() is used to obtain a device descriptor, which can then be used by other functions in the library. The

argumenboard_index

specifies which GPIB interface board the device is connected topddhand

sad arguments specify the GPIB address of the device to be openedbfsag()andibsad(). The

30

Linux-GPIB 3.2.03 Documentation

timeout for io operations is specified byimeout ~ (seeibtmo()). If send_eoi is nonzero, then the EOI
line will be asserted with the last byte sent during writes (beet(). Finally, theeos argument specifies
the end-of-string character and whether or not its reception should terminate readseGs@.

Return value

If sucessful, returns a (non-negative) device descriptor. On failure, -1 is returned.

ibeos

Name
ibeos — set end-of-string mode (board or device)

Synopsis

#include <gpib/ib.h >
int ibeos (int ud, int eosmode);

Description

ibeos() is used to set the end-of-string character and mode. The least significant &bitaafe
specify the eos character. You may also bitwise-or one or more of the following bits to set the eos mode:

Table 1. End-of-String Mode Bits

constant value (hexadecimal) meaning

REOS 0x400 Enable termination of reads
when eos character is received
XEOS 0x800 Assert the EOI line whenever the
eos character is sent during
writes.

BIN 0x1000 Match eos character using all 8
bits (instead of only looking at
the 7 least significant bits).

31

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

ibeot

Name
ibeot — assert EOI with last data byte (board or device)

Synopsis

#include <gpib/ib.h >
int ibeot (int ud, int send_eoi);

Description

If send_eoi is non-zero, then the EOI line will be asserted with the last byte sent by caliaitt{) and
related functions.

Return value

The value ofibstais returned.

ibevent

Name
ibevent — get events from event queue (board)

32

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
int ibevent (int ud, short * event);

Description

ibevent() is used to obtain the oldest event stored in the event queue of the board specified by the board
descriptorud. The EVENT bit ofibstaindicates that the event queue contains 1 or more events. An event
may be a clear command, a trigger command, or reception of an interface clear. The type of event is
stored in the location specified loyent and may be set to any of the following values:

Table 1. events

constant value description
EventNone 0 The board’s event queue is empty
EventDevTrg 1 The board has received a trigger

command from the
controller-in-charge.

EventDevClr 2 The board has received a clear
command from the
controller-in-charge.

EventlFC 3 The board has received an
interface clear from the system
controller. Note, some models of
GPIB interface board lack the
ability to report interface clear
events.

The event queue is disabled by default. It may be enabled by a ¢htdaofig() Each interface board has

a single event queue which is shared across all processes and threads. So, only one process can retrieve
any given event from the queue. Also, the queue is of finite size so events may be lost (ibevent() will
return an error) if it is neglected too long.

Return value

The value ofibstais returned.

33

Linux-GPIB 3.2.03 Documentation

ibfind

Name
ibfind — open a board or device (board or device)
Synopsis

#include <gpib/ib.h >
int ibfind (const char * name);

Description

ibfind() returns a board or device descriptor based on the information found cotifiguration file It is
not required to use this function, since device descriptors can be obtaineitbaati{) and the 'board
index’ (minor number in the configuration file) can be used directly as a board descriptor.

Return value

If sucessful, returns a (non-negative) board or device descriptor. On failure, -1 is returned.

ibgts

Name
ibgts — release ATN (board)

Synopsis

#include <gpib/ib.n >
int ibgts (int ud, int shadow_handshake);

34

ibist

Linux-GPIB 3.2.03 Documentation

Description

ibgts() is the complement dbcac() and causes the board specified by the board desctigttr go to

standby by releasing the ATN line. The board must be controller-in-change to change the state of the
ATN line. If shadow_handshake is nonzero, then the board will handshake any data bytes it receives

until it encounters an EOI or end-of-string character, or the ATN line is asserted again. The received data
is discarded.

It is generally not necessary to call ibgts(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

Return value

The value ofibstais returned.

Name
ibist — set individual status bit (board)

Synopsis

#include <gpib/ib.h >
int ibist (int ud, int ist);

Description

If ist is nonzero, then the individual status bit of the board specified by the board desetipsaset. If
ist is zero then the individual status bit is cleared. The individual status bit is sent by the board in
response to parallel polls.

On succesgberris set to the previous ist value.

35

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

iblines
Name
iblines — monitor bus lines (board)
Synopsis

#include <gpib/ib.n >
int iblines (int ud, short * line_status);

Description

iblines() is used to obtain the status of the control and handshakisiinesof the bus. The board used
to monitor the bus is specified by thé argument, and the status of the various bus lines are written to
the location specified bijne_status

Some older chips are not capable of reporting the status of the bus lines, so each line has two
corresponding bits ifine_status . One bit indicates if the board can monitor the line, and the other bit
indicates the line’s state. The meaning of lihe_status bits are as follows:

Table 1. line status bits

constant value description

ValidDAV 0x1 The BusDAV bit is valid.
ValidNDAC 0x2 The BusNDAC bit is valid.
ValidNRFD 0x4 The BusNRFD bit is valid.
ValidIFC 0x8 The BusIFC bit is valid.
ValidREN 0x10 The BusREN bit is valid.
ValidSRQ 0x20 The BusSRQ bit is valid.
ValidATN 0x40 The BusATN bit is valid.
ValidEOI 0x80 The BusEOI bit is valid.

36

Linux-GPIB 3.2.03 Documentation

constant value description

BusDAV 0x100 Set/cleared if the DAV line is
asserted/unasserted.

BusNDAC 0x200 Set/cleared if the NDAC line is
asserted/unasserted.

BusNRFD 0x400 Set/cleared if the NRFD line is
asserted/unasserted.

BuslFC 0x800 Set/cleared if the IFC line is
asserted/unasserted.

BusREN 0x1000 Set/cleared if the REN line is
asserted/unasserted.

BusSRQ 0x2000 Set/cleared if the SRQ line is
asserted/unasserted.

BusATN 0x4000 Set/cleared if the ATN line is
asserted/unasserted.

BusgOl 0x8000 Set/cleared if the EOI line is
asserted/unasserted.

Return value

The value ofibstais returned.

ibln

Name
ibln — check if listener is present (board or device)

Synopsis

#include <gpib/ib.n >
int ibln (int ud, int pad, int sad, short * found_listener);

37

ibloc

Linux-GPIB 3.2.03 Documentation

Description

ibIn() checks for the presence of a device, by attempting to address it as a listespecifies the GPIB
interface board which should check for listeneraudfis a device descriptor, then the device’s access
board is used.

The GPIB address to check is specified byghe andsad argumentspad specifies the primary

address, 0 through 30 are valid valugsd gives the secondary address, and may be a value from 0x60
through 0x7e (96 through 126), or one of the constants NO_SAD or ALL_SAD. NO_SAD indicates that
no secondary addressing is to be used, and ALL_SAD indicates that all secondary addresses should be
checked.

If the board finds a listener at the specified GPIB address(es), then the variable specified by the pointer
found_listener is set to a nonzero value. If no listener is found, the variable is set to zero.

The board must be controller-in-charge to perform this function. Also, it must have the capability to
monitor the NDACbus line(seeiblines().

Return value

The value ofibstais returned.

Name
ibloc — go to local mode (board or device)

Synopsis

#include <gpib/ib.h >
int ibloc (int ud);

38

ibonl

Linux-GPIB 3.2.03 Documentation

Description

Causes the board or device specified by the descriptdo go to local mode. Ifid is a board descriptor,
and the board is in local lockout, then the function will fail.

Note, if the system controller is asserting the REN line, then devices on the bus will return to remote
mode the next time they are addressed by the controller in charge.

Return value

The value ofibstais returned.

Name
ibonl — close or reinitialize descriptor (board or device)

Synopsis

#include <gpib/ib.h >
int ibonl (int ud, int online);

Description

If the online is zero, then ibonl() frees the resources associated with the board or device desdriptor
The descriptor cannot be used again after the ibonl() call.

If the online is nonzero, then all the settings associated with the descriptor (GPIB address,
end-of-string mode, timeout, etc.) are reset to their 'default’ values. The 'default’ values are the settings
the descriptor had when it was first obtained wittev() or ibfind ().

39

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

ibpad

Name
ibpad — set primary GPIB address (board or device)

Synopsis

#include <gpib/ib.n >
int ibpad (int ud, int pad);

Description

ibpad() sets the GPIB primary address&al for the device or board specified by the descriptobr If

ud is a device descriptor, then the setting is local to the descriptor (it does not affect the behaviour of
calls using other descriptors, even if they refer to the same physical device)idfa board descriptor,

then the board’s primary address is changed immediately, which is a global change affecting anything
(even other processes) using the board. Valid GPIB primary addresses are in the range from 0 to 30.

Return value

The value ofibstais returned.

ibpct

Name
ibpct — pass control (board)

40

ibppc

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
int ibpct (int ud);

Description

ibpct() passes control to the device specified by the device desaniptdihe device becomes the new
controller-in-charge.

Return value

The value ofibstais returned.

Name
ibppc — parallel poll configure (board or device)

Synopsis

#include <gpib/ib.h >
int ibppc (int ud, int configuration);

Description

Configures the parallel poll response of the device or board specified.Byhe configuration
should either be set to the 'PPD’ constant to disable parallel poll responses, or set to the return value of
the PPE_byte()nline function to enable and configure the parallel poll response.

After configuring the parallel poll response of devices on a bus, you maiprm®) to parallel poll the
devices.

41

ibrd

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

Name
ibrd — read data bytes (board or device)

Synopsis

#include <gpib/ib.n >
int ibrd (int ud, void * buffer , long num_bytes);

Description

ibrd() is used to read data bytes from a device or board. The argunieran be either a device or board
descriptor. Up tawm_bytes bytes are read into the user-supplied atsaffer . The read may be
terminated by a timeout occuring(sé¢mo()), the talker asserting the EOI line, the board receiving the
end-of-string character (sé&e0s(), receiving a device clear command, or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the device as talker and the
interface board as listener before performing the read.

If ud is a board descriptor, no addressing is performed and the board must be addressed as a listener by
the controller-in-charge.

After the ibrd() call, ibcnt and ibcntl are set to the number of bytes read.

Return value

The value ofibstais returned.

42

Linux-GPIB 3.2.03 Documentation

ibrda

Name
ibrda — read data bytes asynchronously (board or device)

Synopsis

#include <gpib/ib.n >
int ibrda (int ud, void * buffer , long num_bytes);

Description

ibrda() is similar tabrd() except it operates asynchronously. ibrda() does not wait for the reception of the
data bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you mugiveait() until the CMPL bit is set
ibsta. Asynchronous operations may also be aborted withstop()or ibonl() call.

Return value

The value ofibstais returned.

ibrdf

Name
ibrdf — read data bytes to file (board or device)

Synopsis

#include <gpib/ib.n >
int ibrdf (int ud, const char * file_path);

43

ibrpp

Linux-GPIB 3.2.03 Documentation

Description

ibrdf() is similar toibrd() except that the data bytes read are stored in a file instead of an array in
memoryfile_path specifies the save file. If the file already exists, the data will be appended onto the
end of the file.

Return value

The value ofibstais returned.

Name
ibrpp — perform a parallel poll (board or device)

Synopsis

#include <gpib/ib.h >
int ibrpp (int ud, char * ppoll_result);

Description

ibrpp() causes the interface board to perform a parallel poll, and stores the resulting parallel poll byte in
the location specified bypoll_result . Bits 0 to 7 of the parallel poll byte correspond to the dio lines

1 to 8, with a 1 indicating the corresponding dio line is asserted. The devices on the bus you wish to poll
should be configured beforehand wiitppc() The board which performs the parallel poll must be
controller-in-charge, and is specified by the descriptorlf ud is a device descriptor instead of a board
descriptor, the device’s access board performs the parallel poll.

44

ibrsc

ibrsp

Return value

The value ofibstais returned.

Name
ibrsc — request system control (board)

Synopsis

#include <gpib/ib.n >
int ibrsc (int ud, int request_control

Linux-GPIB 3.2.03 Documentation

Description
If request_control is nonzero, then the board specified by the board descrigtes made system
controller. Ifrequest_control is zero, then the board releases system control.

The system controller has the ability to assert the REN and IFC lines, and is typically also the
controller-in-charge. A GPIB bus may not have more than one system controller.

Return value

The value ofibstais returned.

Name
ibrsp — conduct serial poll (device)

45

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
int ibrsp (int ud, char * result);

Description

ibrsp() serial polls the device specified lyy. The status byte is stored in the location specified by
result

Return value

The value ofibstais returned.

ibrsv

Name
ibrsv — request service (board)

Synopsis

#include <gpib/ib.h >
int ibrsv (int ud, int status_byte);

Description

The serial poll response byte of the board specified by the board desadptoset tostatus_byte . If
the request service bit (0x40 hexadecimaljtatus_byte is set, then the board will also request
service by asserting the RQS line.

46

ibsad

Linux-GPIB 3.2.03 Documentation

Return value

The value ofibstais returned.

Name
ibsad — set secondary GPIB address (board or device)

Synopsis

#include <gpib/ib.n >
int ibsad (int ud, int sad);

Description

ibsad() sets the GPIB secondary address of the device or board specified by the destriptad is a

device descriptor, then the setting is local to the descriptor (it does not affect the behaviour of calls using
other descriptors, even if they refer to the same physical devicg). i a board descriptor, then the

board’s secondary address is changed immediately, which is a global change affecting anything (even
other processes) using the board.

This library follows NI's unfortunate convention of adding 0x60 hexadecimal (96 decimal) to secondary
addresses. That is, if you wish to set the secondary address to 3, you shaaldl 820x63. Settingad

to O disables the use of secondary addressing. Valid GPIB secondary addresses are in the range from 0 to
30 (which correspond tead values of 0x60 to 0x7e).

Return value

The value ofibstais returned.

47

Linux-GPIB 3.2.03 Documentation

ibsic

Name
ibsic — perform interface clear (board)

Synopsis

#include <gpib/ib.n >
int ibsic (int ud);

Description

ibsic() resets the GPIB bus by asserting the 'interface clear’ (IFC) bus line for a duration of at least 100
microseconds. The board specifieddaymust be the system controller in order to assert IFC. The
interface clear causes all devices to untalk and unlisten, puts them into serial poll disabled state (don'’t
worry, you will still be able to conduct serial polls), and the board becomes controller-in-charge.

Return value

The value ofibstais returned.

ibsre

Name
ibsre — set remote enable (board)

Synopsis

#include <gpib/ib.n >
int ibsre (int ud, int enable);

48

Linux-GPIB 3.2.03 Documentation

Description

If enable is nonzero, then the board specified by the board descrigtasserts the REN line. If
enable is zero, the REN line is unasserted. The board must be the system controller.

Return value

The value ofibstais returned.

ibstop

Name
ibstop — abort asynchronous i/o operation (board or device)
Synopsis

#include <gpib/ib.h >
int ibstop (int ud);

Description

ibstop() aborts an asynchronous i/o operation (for example, one starteitbavitda() ibrda(), or
ibwrta()).

The return value of ibstop() is counter-intuitive. On successfully aborting an asynchronous operation, the
ERR bit is set inbstg andiberris set to EABO. If the ERR bit is not set in ibsta, then there was no
asynchronous i/o operation in progress. If the function failed, the ERR bit will be set and iberr will be set
to some value other than EABO.

Return value

The value ofibstais returned.

49

ibtmo

Linux-GPIB 3.2.03 Documentation

Name
ibtmo — adjust io timeout (board or device)

Synopsis

#include <gpib/ib.n >
int ibtmo (int ud, int timeout);

Description

ibtmo() sets timeout for IO operations performed using the board or device desadptbne actual
amount of time before a timeout occurs may be greater than the period specified, but never less.
timeout is specified by using one of the following constants:

Table 1. Timeout constants

constant value timeout

TNONE 0 Never timeout.
T10us 1 10 microseconds
T30us 2 30 microseconds
T100us 3 100 microseconds
T300us 4 300 microseconds
Tims 5 1 millisecond
T3ms 6 3 milliseconds
T10ms 7 10 milliseconds
T30ms 8 30 milliseconds
T100ms 9 100 milliseconds
T300ms 10 300 milliseconds
T1s 11 1 second

T3s 12 3 seconds

T10s 13 10 seconds

T30s 14 30 seconds
T100s 15 100 seconds
T300s 16 300 seconds

50

ibtrg

Linux-GPIB 3.2.03 Documentation

constant value

timeout

T1000s 17

1000 seconds

Return value

The value ofibstais returned.

Name
ibtrg — trigger device (device)

Synopsis

#include <gpib/ib.h >
int ibtrg (int ud);

Description

ibtrg() sends a GET (group execute triggesmmand byteo the device specified by the device

descriptond.

Return value

The value ofibstais returned.

51

ibwait

ibwrt

Name
ibwait — wait for event (board or device)
Synopsis

#include <gpib/ib.n >
int ibwait (int ud, int status_mask);

Description

Linux-GPIB 3.2.03 Documentation

ibwait() will sleep until one of the conditions specifiedsitatus_mask is true. The meaning of the bits
in status_mask are the same as the bits of tibstastatus variable.

If status_mask is zero, then ibwait() will return immediately. This is useful if you simply wish to get

an updated ibsta.

Return value

The value ofibstais returned.

Name
ibwrt — write data bytes (board or device)

Synopsis

#include <gpib/ib.n >

int ibwrt (int ud, const void * data, long

num_bytes);

52

Linux-GPIB 3.2.03 Documentation

Description

ibwrt() is used to write data bytes to a device or board. The arguageoan be either a device or board
descriptornum_bytes specifies how many bytes are written from the user-supplied detay. EOI

may be asserted with the last byte sent or when the end-of-string character is sahe(sfand

ibeot(). The write operation may be interrupted by a timeout (&&eo()), the board receiving a device
clear command, or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the device as listener and
the interface board as talker, before sending the data bytes onto the bus.

If ud is a board descriptor, the board simply writes the data onto the bus. The controller-in-charge must
address the board as talker.

After the ibwrt() call, ibcnt and ibcntl are set to the number of bytes written.

Return value

The value ofibstais returned.

ibwrta
Name
ibwrta — write data bytes asynchronously (board or device)
Synopsis

#include <gpib/ib.h >
int ibwrta (int ud, const void * buffer , long num_bytes);

Description

ibwrta() is similar toibwrt() except it operates asynchronously. ibwrta() does not wait for the sending of
the data bytes to complete, but rather returns immediately.

53

Linux-GPIB 3.2.03 Documentation

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you mugiveait() and until the CMPL bit
is set ibsta. Asynchronous operations may also be aborted witis&p()or ibonl() call.

Return value

The value ofibstais returned.

ibwrtf
Name
ibwrtf — write data bytes from file (board or device)
Synopsis

#include <gpib/ib.h >
int ibwrtf (int ud, const char * file_path);

Description

ibwrtf() is similar toibwrt() except that the data to be written is taken from a file instead of an array in
memoryfile_path specifies the file, which is written byte for byte onto the bus.

Return value

The value ofibstais returned.

54

Linux-GPIB 3.2.03 Documentation

4.3. 'Multidevice’ APl Functions

AlISPoll

Name
AlISPoll — serial poll multiple devices

Synopsis

#include <gpib/ib.h >

void AlISPoll (int board _desc , Addr4882_t * addressList , short * resultList);
void AllSpoll (int board_desc , const Addr4882_t * addressList , short

* resultList);

Description

AlISPoll() causes the interface board specifiecbbyrd_desc to serial poll all the GPIB addresses
specified in theaddressList array. The results of the serial polls are stored retuiltList . Ifyou
only wish to serial poll a single devicReadStatusByte@r ibrsp()may be more convenient.

This function may also be invoked with the alternate capitalization 'AllISpoll’ for compatibility with NI's
library.

DevClear

Name
DevClear — clear a device

Synopsis

#include <gpib/ib.h >
void DevClear (int board_desc , Addr4882_t address);

55

Linux-GPIB 3.2.03 Documentation

Description

DevClear() causes the interface board specifietdayd_desc to send the clear command to the GPIB
addresses specified hydress . The results of the serial polls are stored irdsultList . If you wish
to clear multiple devices simultaneously, i3evClearList()

DevClearList

Name
DevClearList — clear multiple devices

Synopsis

#include <gpib/ib.h >
void DevClearList (int board_desc , const Addr4882_t addressList[]);

Description

DevClear() causes the interface board specifieddayd_desc to send the clear command
simultaneously to all the GPIB addresses specified byudbeessList array. IfaddressList is

empty or NULL, then the clear command is sent to all devices on the bus. If you only wish to clear a
single devicePevClear()or ibclr() may be slightly more convenient.

EnablelLocal

Name
EnableLocal — put devices into local mode.

Synopsis

#include <gpib/ib.h >
void EnableLocal (int board_desc , const Addr4882_t addressList[]);

56

Linux-GPIB 3.2.03 Documentation

Description

EnableLocal() addresses all of the devices indtidressList array as listeners then sends the GTL

(go to local) command byte, causing them to enter local mode. This requires that the board is the
controller-in-charge. Note that while the REN (remote enable) bus line is asserted, the devices will return
to remote mode the next time they are addressed.

If addressList is empty or NULL, then the REN line is unasserted and all devices enter local mode.
The board must be system controller to change the state of the REN line.

EnableRemote

Name
EnableRemote — put devices into remote mode.

Synopsis

#include <gpib/ib.h >
void EnableRemote (int board_desc , const Addr4882 t addressList[]);

Description

EnableRemote() asserts the REN (remote enable) line, and addresses all of the devices in the
addressList array as listeners (causing them to enter remote mode). The board must be system
controller.

57

Linux-GPIB 3.2.03 Documentation

FindLstn

Name
FindLstn — find devices

Synopsis

#include <gpib/ib.n >
void FindLstn (int board_desc , const Addr4882_t padList]] , Addr4882_t
resultList(] , int maxNumResults);

Description

FindLstn() will check the primary addresses in tlzelList array for devices. The GPIB addresses of all
devices found will be stored in thesultList array. ThenmaxNumResults limits the maximum

number of results that will be returned, and is usually set to the number of elementséauikigst

array. If more thamaxNumResults devices are found, an ETAB error is returneddarr. ThepadList

should consist of primary addresses only, with no secondary addresses (all possible secondary addresses
will be checked as necessary).

Your GPIB board must have the capability to monitor the NDAC bus line in order to use this function
(seeiblines).

FiIndRQS

Name
FindRQS — find device requesting service and read its status byte

Synopsis

#include <gpib/ib.h >
void FindRQS(int board_desc , const Addr4882_t addressList[] , short * status);

58

Linux-GPIB 3.2.03 Documentation

Description

FindRQS will serial poll the GPIB addresses specified inatfidressList array until it finds a device
requesting service. The status byte of the device requesting service is stored in the location specified by
status . TheaddressList array index of the device requesting service is returnelddnt. If no device
requesting service is found, an ETAB error is returneibérr.

PassControl

Name
PassControl — make device controller-in-charge

Synopsis

#include <gpib/ib.h >
void PassControl (int board_desc , const Addr4882_t address);

Description

PassControl() causes the board specifietldayd_desc to pass control to the device specified by
address . On success, the device becomes the new controller-in-charge.

PPoll

Name
PPoll — parallel poll devices

Synopsis

#include <gpib/ib.h >
void PPoll (int board_desc , short * result);

59

Linux-GPIB 3.2.03 Documentation

Description

PPoll() is similar to the 'traditional’ API functioibrpp(). It causes the interface board to perform a
parallel poll, and stores the parallel poll byte in the location specifie@dnt . Bits O to 7 of the
parallel poll byte correspond to the dio lines 1 to 8, with a 1 indicating the corresponding dio line is
asserted. The devices on the bus you wish to poll should be configured beforehaRéualitbonfig()
The board must be controller-in-charge to perform a parallel poll.

PPollConfig

Name
PPollConfig — configure a device’s parallel poll response

Synopsis

#include <gpib/ib.h >
void PPollConfig (int board desc , Addr4882_t address , int dio_line , int
line_sense);

Description

PPollConfig() configures the device specifiedddgress to respond to parallel polls. Thio_line

(valid values are 1 through 8) specifies which dio line the device being configured should use to send
back its parallel poll response. Tlige_sense argument specifies the polarity of the response. If
line_sense is nonzero, then the specified dio line will be asserted to indicate that the ’individual status
bit’ (or ’ist’) is 1. If sense is zero, then the specified dio line will be asserted when ist is zero.

60

Linux-GPIB 3.2.03 Documentation

PPollUnconfig

Name

PPollUnconfig ~ — disable devices’ parallel poll response

Synopsis

#include <gpib/ib.n >

void PPollUnconfig (int board_desc , const Addr4882_t addressList[]);
Description

PPollUnconfig() configures the devices specifiechbigressList to ignore parallel polls.

RcvRespMsg

Name
RcvRespMsg — read data

Synopsis

#include <gpib/ib.n >
void RcvRespMsg(int board_desc , void * buffer , long count , int termination);

Description

RcvRespMsg() reads data from the bus. A device must have already been addressed as talker (and the
board as listener) before calling this function. Addressing may be accomplished witleteé/eSetup()
function.

Up tocount bytes are read into the array specifiecboffer . Thetermination = argument specifies
the 8-bit end-of-string character (which must be a value from 0 to 255) whose reception will terminate a

61

Linux-GPIB 3.2.03 Documentation

read.termination can also be set to the 'STOPend’ constant, in which case no end-of-string character
will be used. Assertion of the EOI line will always end a read.

You may find it simpler to use the slightly higher level functi®aceive() since it does not require
addressing and reading of data to be performed separately.

ReadStatusByte

Name
ReadStatusByte = — serial poll a device

Synopsis

#include <gpib/ib.h >
void ReadStatusByte (int board_desc , Addr4882_t address , short * result);

Description

ReadStatusByte() causes the board specified by the board desasiptbrdesc to serial poll the GPIB
address specified address . The status byte is stored at the location specified byethidt pointer.

If you wish to serial poll multiple devices, it may be slightly more efficient to AB8Poll(). Serial polls
may also be conducted with the 'traditional API’ functitmsp().

Receive

Name
Receive — perform receive addressing and read data

Synopsis

#include <gpib/ib.h >

62

Linux-GPIB 3.2.03 Documentation

void Receive (int board_desc , Addr4882_t address , void * buffer , long count ,
int termination);

Description

Receive() performs the necessary addressing, then reads data from the device spemifieskby. It is
equivalent to &eceiveSetup@all followed by aRcvRespMsg(tall.

ReceiveSetup

Name
ReceiveSetup — perform receive addressing

Synopsis

#include <gpib/ib.h >
void ReceiveSetup (int board_desc , Addr4882_t address);

Description

ReceiveSetup() addresses the device specifieditiyess as talker, and addresses the interface board as
listener. A subsequemcvRespMsg(tall will read data from the device.

You may find it simpler to use the slightly higher level functiBeceive() since it does not require
addressing and reading of data to be performed separately.

ResetSys

Name
ResetSys — reset system

63

Send

Linux-GPIB 3.2.03 Documentation

Synopsis

#include <gpib/ib.h >

void ResetSys (int board_desc , const Addr4882_t addressList[]);
Description

ResetSys() has the following effects:

- The remote enable bus line is asserted.
- Aninterface clear is performed (the interface clear bus line is asserted for at least 100 microseconds).
- The device clear command is sent to all the devices on the bus.

- The *RST message is sent to every device specified iadbeessList

Name
Send — perform send addressing and write data

Synopsis

#include <gpib/ib.n >
void Send(int board_desc , Addr4882_t address , const void * data, long count ,
int eot_mode);

Description

Send() addresses the device specifieddijress as listener, then writes data onto the bus. Itis
equivalent to &endList()except it only uses a single GPIB address to specify the listener instead of
allowing an array of listeners.

64

Linux-GPIB 3.2.03 Documentation

SendCmds

Name
SendCmds— write command bytes onto bus

Synopsis

#include <gpib/ib.n >
void SendCmdg(int board_desc , const void * cmds, long count);

Description
SendCmds() writesount command byt@nto the the GPIB bus from the arrayds.

It is generally not necessary to call SendCmds(). It is provided for advanced users who want direct,
low-level access to the GPIB bus.

SendDataBytes

Name
SendDataBytes — write data

Synopsis

#include <gpib/ib.n >
void SendDataBytes (int board_desc , const void * data, long count , int
eot_mode);

65

Linux-GPIB 3.2.03 Documentation

Description

SendDataBytes() writes data to the bus. One or more devices must have already been addressed as
listener (and the board as talker) before calling this function. Addressing may be accomplished with the
SendSetup(unction.

count bytes are written from the array specifieddata . Theeot_mode argument specifies how the
message should be terminated, and may be any of the following values:

Table 1. eot modes

constant value description

NULLend 0 Do not assert EOI or add a
newline at the end of the write.

DABend 1 Assert EOI with the last byte of
the write.

NLend 2 Append a newline, and assert
EOI with the newline at the end
of the write.

You may find it simpler to use the slightly higher level functidend()or SendList() since they does
not require addressing and writing of data to be performed separately.

SendIFC

Name
SendIFC — perform interface clear

Synopsis

#include <gpib/ib.n >
void SendIFC (int board_desc);

66

Linux-GPIB 3.2.03 Documentation

Description

SendIFC() resets the GPIB bus by asserting the 'interface clear’ (IFC) bus line for a duration of at least
100 microseconds. The board specifiecbbyrd_desc must be the system controller in order to assert

IFC. The interface clear causes all devices to untalk and unlisten, puts them into serial poll disabled state
(don't worry, you will still be able to conduct serial polls), and the board becomes controller-in-charge.

SendList

Name
SendList — write data to multiple devices

Synopsis

#include <gpib/ib.h >
void SendList (int board_desc , const Addr4882_t addressList[] , const void
*data , long count , int eot_mode);

Description

SendList() addresses the deviceaddressList as listeners, then writes the contents of the ateay
to them. It is equivalent to SendSetup(@all followed by aSendDataBytes@all.

SendLLO

Name
SendLLO — put devices into local lockout mode

Synopsis

#include <gpib/ib.n >
void SendLLO(int board_desc);

67

Linux-GPIB 3.2.03 Documentation

Description

SendLLO() asserts the 'remote enable’ bus line, then sends thecbhh®nand byteAny devices

currently addressed as listener will be put into RWLS (remote with lockout state), and all other devices
will enter LWLS (local with lockout state). Local lockout means the remote/local mode of devices cannot
be changed though the devices’ front-panel controls.

The SetRWLS()performs a similar function, except it lets you specifiy which devices you wish to
address as listener before sending the LLO command.

SendSetup

Name
SendSetup — perform send addressing

Synopsis

#include <gpib/ib.h >
void SendSetup (int board_desc , const Addr4882 t addressList[]);

Description

SendSetup() addresses the deviceslifressList as listeners, and addresses the interface board as
talker. A subsequer8endDataBytes@all will write data to the devices.

You may find it simpler to use the slightly higher level functi®snd()or SendList() since they does
not require addressing and writing of data to be performed separately.

68

Linux-GPIB 3.2.03 Documentation

SetRWLS

Name
SetRWLS— put devices into remote with lockout state

Synopsis

#include <gpib/ib.n >
void SetRWLSint board_desc , const Addr4882_t addressList[]);

Description

SetRWLS() asserts the remote enable’ bus line, addresses the deviceaddrtssList — array as
listeners, then sends the LLé@mmand byteThe devices addressed as listener will be put into RWLS
(remote with lockout state), and all other devices will enter LWLS (local with lockout state). Local
lockout means the remote/local mode of devices cannot be changed though the devices’ front-panel
controls.

TestSRQ

Name
TestSRQ — query state of SRQ bus line

Synopsis

#include <gpib/ib.n >
void TestSRQ(int board_desc , short * result);

Description

TestSRQ() checks the state of the SR} lineand writes its state to the location specifiedrésult
A1’ indicates the SRQ line is asserted, and a '0’ indicates the line is not asserted.

69

Linux-GPIB 3.2.03 Documentation

Some boards lack the capability to report the status of the SRQ line. In such a case, an ECAP error is
returned iniberr.

TestSys

Name
TestSys — perform self-test queries on devices

Synopsis

#include <gpib/ib.h >

void TestSys (int board_desc , const Addr4882_t addressList[] , short
results[]);

Description

TestSys() sends the *TST?’ message to all the devices iadtessList array, then reads their

responses into thesults array. This will cause devices that conform to the IEEE 488.2 standard to
perform a self-test and respond with a zero on success. A non-zero response indicates an error during the
self-test.

The number of devices which responded with nonzero values from their self-tests is retuibwad and
ibcntl. If a device fails to respond to the *TST? query, an error will be flaggeldsta(this is different
than NI's documented behaviour which is broken).

Trigger

Name
Trigger — trigger a device

70

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
void Trigger (int board_desc , Addr4882_t address);

Description

Trigger() is equivalent to ariggerList() call with a single address.

TriggerList
Name
Trigger — trigger multiple devices
Synopsis

#include <gpib/ib.h >
void TriggerList (int board_desc , Addr4882_t addressList[]);

Description

TriggerList() sends a GET (group execute triggayinmand bytao all the devices specified in the
addressList array. If no addresses are specifieddressList then the GET command byte is sent
without performing any addressing.

WaitSRQ

Name
WaitSRQ — sleep until the SRQ bus line is asserted

71

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
void WaitSRQ(int board_desc , short * result);

Description

WaitSRQ() sleeps until either the SRIQs lineis asserted, or a timeout (simo()) occurs. A1’ will
be written to the location specified bgsult if SRQ was asserted, and a '0’ will be written if the
function timed out.

4.4. Utility Functions

GetPAD

Name
GetPAD — extract primary address from an Addr4882_t value

Synopsis

#include <gpib/ib.h >

static __inline__ unsigned int GetPAD(Addr4882_t address);
Description

GetPAD() extracts the primary address packed into the Addr4882_t aadiness .

Return value

The primary GPIB address (from 0 through 30) storedddress .

72

Linux-GPIB 3.2.03 Documentation

GetSAD

Name
GetSAD — extract secondary address from an Addr4882_t value

Synopsis

#include <gpib/ib.n >

static __inline__ unsigned int GetSAD(Addr4882_t address);
Description

GetSAD() extracts the secondary address packed into the Addr4882_tudtass .

Return value

The secondary GPIB address (from 0x60 through 0x7e, or 0 for none) stoaddréss .

MakeAddr

Name
MakeAddr — pack primary and secondary address into an Addr4882_t value

Synopsis

#include <gpib/ib.h >
static __inline__ Addr4882_t MakeAddr (unsigned int pad, unsigned int sad);

73

Linux-GPIB 3.2.03 Documentation

Description

MakeAddr() generates an Addr4882_t value that corresponds to the specified primary paldirasd
secondary addresad . It does so by puttingad into the least significant byte and left shiftiegd up
to the next byte.

Examples

Addr4882_t addressList[5];

addressListf 0] = 5 /* primary address 5, no secondary address */

addressListf 1] = MakeAddr(3, 0); /* primary address 3, no secondary address */
addressList] 2] = MakeAddr(7, 0x70); /* primary address 3, secondary address 16 */
addressListf 3] = MakeAddr(20, MSA(9)); /* primary address 20, secondary address 9 */
addressListf 4] = NOADDR;

Return value

An Addr4882_t value corresponding to the specified primary and secondary GPIB address.

MLA

Name
MLA— generate 'my listen address’ command byte

Synopsis

#include <gpib/ib.h >
uint8_t MLAunsigned int address);

Description

MLA() returns a 'my listen addres€ommand byteorresponding to thaddress argument. The
address my be between 0 and 30.

74

Linux-GPIB 3.2.03 Documentation

Return value

The appropriate MLA command byte is returned.

MSA

Name
MSA— generate 'my secondary address’ command byte

Synopsis

#include <gpib/ib.n >
uint8_t MSAunsigned int address);

Description

MSA() returns a 'my secondary addresemmand byteorresponding to thaddress argument. The
address my be between 0 and 30. This macro is also useful for mangling secondary addresses from the
real’ values between 0 and 30 to the range 0x60 to 0x7e used by most of the library’s functions.

Return value

The appropriate MSA command byte is returned.

MTA

Name
MTA— generate 'my talk address’ command byte

75

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
uint8_t MTAunsigned int address);

Description

MTA() returns a 'my talk addres€ommand byteorresponding to thaddress argument. The
address my be between 0 and 30.

Return value

The appropriate MTA command byte is returned.

PPE_byte

Name
PPE_byte — generate 'parallel poll enable’ command byte

Synopsis

#include <gpib/ib.h >
uint8_t PPE_byte (unsigned int dio_line , int sense);

Description

PPE_byte() returns a 'parallel poll enabt&mmand byteorresponding to theio_line andsense
arguments. Theio_line (valid values are 1 through 8) specifies which dio line the device being
configured should use to send back its parallel poll responseseéfise argument specifies the polarity
of the response. Kense is nonzero, then the specified dio line will be asserted to indicate that the
'individual status bit’ (or 'ist’) is 1. Ifsense is zero, then the specified dio line will be asserted when ist
is zero.

76

Linux-GPIB 3.2.03 Documentation

Return value

The appropriate PPE command byte is returned.

Threadlbcnt and Threadlbcntl

Name
Threadlbcnt and Threadlbcentl — thread-specific ibcnt and ibcntl values

Synopsis

#include <gpib/ib.n >
int Threadlbcnt (void);
long Threadlbentl (void);

Description

Threadlbcnt() and Threadlbcentl() return thread-local versions of the global varibigsand ibcntl

Return value

The value ofibcnt or ibcntlcorresponding to the last 'traditional’ or ‘'multidevice’ function called in the
current thread is returned.

Threadlberr

Name
Threadlberr — thread-specific iberr value

77

Linux-GPIB 3.2.03 Documentation
Synopsis

#include <gpib/ib.h >
int Threadlberr (void);

Description

Threadlberr() returns a thread-local version of the global variiele.

Return value

The value ofiberr corresponding to the last 'traditional’ or 'multidevice’ function called by the current
thread is returned.

Threadlbsta

Name
Threadlbsta — thread-specific ibsta value

Synopsis

#include <gpib/ib.h >
int Threadlbsta (void);

Description

Threadlbsta() returns a thread-local version of the global variabta

Return value

The value ofibstacorresponding to the last 'traditional’ or 'multidevice’ function called by the current
thread is returned.

78

Linux-GPIB 3.2.03 Documentation

5. GPIB protocol

5.1. GPIB command bytes

The meaning and values of the possible GPIB command bytes are as follows:

Table 12. GPIB command bytes

byte value (hexadecimal) name description

0x1 GTL Go to local

0x4 SDC Selected device clear

0x5 PPConfig (also 'PPC’ on Parallel poll configure

non-powerpc architectures)

0x8 GET Group execute trigger

0x9 TCT Take control

0x11 LLO Local lockout

0x14 DCL Device clear

0x15 PPU Parallel poll unconfigure

0x18 SPE Serial poll enable

0x19 SPD Serial poll disable

0x20 to 0x3e MLAO to MLA30 My (primary) listen address 0 td
30

Ox3f UNL Unlisten

0x40 to 0x5e MTAO to MTA30 My (primary) talk address 0 to
30

0x5f UNT Untalk

79

Linux-GPIB 3.2.03 Documentation

byte value (hexadecimal)

name

description

0x60 to Ox6f

MSAO to MSA15, also PPE

When following a talk or listen
address, this is 'my secondary

address’ 0 to 15. When following

a parallel poll configure, this is

'parallel poll enable’. For paralle

poll enable, the least significant
bits of the command byte speci
which DIO line the device shoul
use to send its parallel poll
response. The fourth least
significant bit (Ox8) indicates th
'sense’ or polarity the device
should use when responding.

0x70 to Ox7d

MSA16 to MSA29, also PPD

When following a talk or listen
address, this is ‘'my secondary
address’ 16 to 29. When
following a parallel poll
configure, this is 'parallel poll
disable’.

Ox7e

MSA30

My secondary address 30

5.2. GPIB bus lines

Physically, the GPIB bus consists of 8 data lines, 3 handshaking lines, and 5 control lines (and 8 ground

lines). Brief descriptions of how they are used follow:

Table 13. GPIB bus lines

bus line

description

pin number

DIO1 through DIO8

Data input/output bits. These 8
lines are used to read and write
the 8 bits of a data or command
byte that is being sent over the
bus.

DIO1 to DIO4 use pins 1 to 4,
DIO5 to DIO8 use pins 13 to 16

EOI

End-or-identify. This line is

asserted with the last byte of data

during a write, to indicate the
end of the message. It can also
asserted along with the ATN lin
to conduct a parallel poll.

be

1)

ey

D

3

80

Linux-GPIB 3.2.03 Documentation

bus line description pin number

DAV Data valid. This is a handshaking
line, used to signal that the valye
being sent with DIO1-DIO8 is
valid. During transfers the
DIO1-DIO8 lines are set, then
the DAV line is asserted after a
delay called the 'T1 delay’. The
T1 delay lets the data lines settle
to stable values before they are
read.

NRFD Not ready for data. NRFDisa |7
handshaking line asserted by
listeners to indicate they are not
ready to receive a new data byte.

NDAC Not data accepted. NDACisa |8
handshaking line asserted by
listeners to indicate they have not
yet read the byte contained on
the DIO lines.

IFC Interface clear. The system 9
controller can assert this line (it
should be asserted for at least
100 microseconds) to reset the
bus and make itself
controller-in-charge.

SRQ Service request. Devices on the 10
bus can assert this line to request
service from the
controller-in-charge. The
controller can then poll the
devices until it finds the device
requesting service, and perform
whatever action is necessary.

ATN Attention. ATN is assertedto |11
indicate that the DIO lines
contain acommand bytéas
opposed to a data byte). Also, it
is asserted with EOl when
conducting parallel polls.

81

Linux-GPIB 3.2.03 Documentation

bus line description pin number

REN Remote enable. Asserted by thel7
system controller, it enables
devices to enter remote mode.
When REN is asserted, a device
will enter remote mode when it
addressed by the controller.
When REN is false, all devices
will immediately return to local
mode.

7]

A. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

A.1l. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the

82

Linux-GPIB 3.2.03 Documentation

copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed

83

Linux-GPIB 3.2.03 Documentation

to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements"”, or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

A.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

84

Linux-GPIB 3.2.03 Documentation

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opague copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown iAtltendumbelow.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

85

Linux-GPIB 3.2.03 Documentation

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements"”, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

A.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined insection 4above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

86

Linux-GPIB 3.2.03 Documentation

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a uniqgue number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements”.

A.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

A.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

A.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission

87

Linux-GPIB 3.2.03 Documentation

from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

A.12. ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the

88

Linux-GPIB 3.2.03 Documentation

Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

89

	1. Copying
	2. Configuration
	gpib.conf
	Name
	Description

	gpibconfig
	Name
	Synopsis
	Description
	Options

	3. Supported Hardware
	3.1. Supported Hardware Matrix
	3.2. BoardSpecific Notes
	3.2.1. Agilent 82350B
	3.2.2. Agilent 82357A

	4. LinuxGPIB Reference
	4.1. Global Variables

	ibcnt and ibcntl
	Name
	Synopsis
	Description

	iberr
	Name
	Synopsis
	Description

	ibsta
	Name
	Synopsis
	Description
	4.2. 'Traditional' API Functions

	ibask
	Name
	Synopsis
	Description
	Return value

	ibbna
	Name
	Synopsis
	Description
	Return value

	ibcac
	Name
	Synopsis
	Description
	Return value

	ibclr
	Name
	Synopsis
	Description
	Return value

	ibcmd
	Name
	Synopsis
	Description
	Return value

	ibcmda
	Name
	Synopsis
	Description
	Return value

	ibconfig
	Name
	Synopsis
	Description
	Return value

	ibdev
	Name
	Synopsis
	Description
	Return value

	ibeos
	Name
	Synopsis
	Description
	Return value

	ibeot
	Name
	Synopsis
	Description
	Return value

	ibevent
	Name
	Synopsis
	Description
	Return value

	ibfind
	Name
	Synopsis
	Description
	Return value

	ibgts
	Name
	Synopsis
	Description
	Return value

	ibist
	Name
	Synopsis
	Description
	Return value

	iblines
	Name
	Synopsis
	Description
	Return value

	ibln
	Name
	Synopsis
	Description
	Return value

	ibloc
	Name
	Synopsis
	Description
	Return value

	ibonl
	Name
	Synopsis
	Description
	Return value

	ibpad
	Name
	Synopsis
	Description
	Return value

	ibpct
	Name
	Synopsis
	Description
	Return value

	ibppc
	Name
	Synopsis
	Description
	Return value

	ibrd
	Name
	Synopsis
	Description
	Return value

	ibrda
	Name
	Synopsis
	Description
	Return value

	ibrdf
	Name
	Synopsis
	Description
	Return value

	ibrpp
	Name
	Synopsis
	Description
	Return value

	ibrsc
	Name
	Synopsis
	Description
	Return value

	ibrsp
	Name
	Synopsis
	Description
	Return value

	ibrsv
	Name
	Synopsis
	Description
	Return value

	ibsad
	Name
	Synopsis
	Description
	Return value

	ibsic
	Name
	Synopsis
	Description
	Return value

	ibsre
	Name
	Synopsis
	Description
	Return value

	ibstop
	Name
	Synopsis
	Description
	Return value

	ibtmo
	Name
	Synopsis
	Description
	Return value

	ibtrg
	Name
	Synopsis
	Description
	Return value

	ibwait
	Name
	Synopsis
	Description
	Return value

	ibwrt
	Name
	Synopsis
	Description
	Return value

	ibwrta
	Name
	Synopsis
	Description
	Return value

	ibwrtf
	Name
	Synopsis
	Description
	Return value
	4.3. 'Multidevice' API Functions

	AllSPoll
	Name
	Synopsis
	Description

	DevClear
	Name
	Synopsis
	Description

	DevClearList
	Name
	Synopsis
	Description

	EnableLocal
	Name
	Synopsis
	Description

	EnableRemote
	Name
	Synopsis
	Description

	FindLstn
	Name
	Synopsis
	Description

	FindRQS
	Name
	Synopsis
	Description

	PassControl
	Name
	Synopsis
	Description

	PPoll
	Name
	Synopsis
	Description

	PPollConfig
	Name
	Synopsis
	Description

	PPollUnconfig
	Name
	Synopsis
	Description

	RcvRespMsg
	Name
	Synopsis
	Description

	ReadStatusByte
	Name
	Synopsis
	Description

	Receive
	Name
	Synopsis
	Description

	ReceiveSetup
	Name
	Synopsis
	Description

	ResetSys
	Name
	Synopsis
	Description

	Send
	Name
	Synopsis
	Description

	SendCmds
	Name
	Synopsis
	Description

	SendDataBytes
	Name
	Synopsis
	Description

	SendIFC
	Name
	Synopsis
	Description

	SendList
	Name
	Synopsis
	Description

	SendLLO
	Name
	Synopsis
	Description

	SendSetup
	Name
	Synopsis
	Description

	SetRWLS
	Name
	Synopsis
	Description

	TestSRQ
	Name
	Synopsis
	Description

	TestSys
	Name
	Synopsis
	Description

	Trigger
	Name
	Synopsis
	Description

	TriggerList
	Name
	Synopsis
	Description

	WaitSRQ
	Name
	Synopsis
	Description
	4.4. Utility Functions

	GetPAD
	Name
	Synopsis
	Description
	Return value

	GetSAD
	Name
	Synopsis
	Description
	Return value

	MakeAddr
	Name
	Synopsis
	Description
	Examples
	Return value

	MLA
	Name
	Synopsis
	Description
	Return value

	MSA
	Name
	Synopsis
	Description
	Return value

	MTA
	Name
	Synopsis
	Description
	Return value

	PPEbyte
	Name
	Synopsis
	Description
	Return value

	ThreadIbcnt and ThreadIbcntl
	Name
	Synopsis
	Description
	Return value

	ThreadIberr
	Name
	Synopsis
	Description
	Return value

	ThreadIbsta
	Name
	Synopsis
	Description
	Return value

	5. GPIB protocol
	5.1. GPIB command bytes
	5.2. GPIB bus lines

	A. GNU Free Documentation License
	A.1. PREAMBLE
	A.2. APPLICABILITY AND DEFINITIONS
	A.3. VERBATIM COPYING
	A.4. COPYING IN QUANTITY
	A.5. MODIFICATIONS
	A.6. COMBINING DOCUMENTS
	A.7. COLLECTIONS OF DOCUMENTS
	A.8. AGGREGATION WITH INDEPENDENT WORKS
	A.9. TRANSLATION
	A.10. TERMINATION
	A.11. FUTURE REVISIONS OF THIS LICENSE
	A.12. ADDENDUM: How to use this License for your documents

