Actual source code: vinv.c
1: #define PETSCVEC_DLL
3: /*
4: Some useful vector utility functions.
5: */
6: #include private/vecimpl.h
13: /*@
14: VecStrideScale - Scales a subvector of a vector defined
15: by a starting point and a stride.
17: Collective on Vec
19: Input Parameter:
20: + v - the vector
21: . start - starting point of the subvector (defined by a stride)
22: - scale - value to multiply each subvector entry by
24: Notes:
25: One must call VecSetBlockSize() before this routine to set the stride
26: information, or use a vector created from a multicomponent DA.
28: This will only work if the desire subvector is a stride subvector
30: Level: advanced
32: Concepts: scale^on stride of vector
33: Concepts: stride^scale
35: .seealso: VecNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMin(), VecStrideMax(), VecStrideScale()
36: @*/
37: PetscErrorCode VecStrideScale(Vec v,PetscInt start,PetscScalar scale)
38: {
40: PetscInt i,n,bs;
41: PetscScalar *x;
45: VecGetLocalSize(v,&n);
46: VecGetArray(v,&x);
48: bs = v->map.bs;
49: if (start < 0) {
50: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
51: } else if (start >= bs) {
52: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Start of stride subvector (%D) is too large for stride\n\
53: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
54: }
55: x += start;
57: for (i=0; i<n; i+=bs) {
58: x[i] *= scale;
59: }
60: x -= start;
62: VecRestoreArray(v,&x);
63: return(0);
64: }
68: /*@
69: VecStrideNorm - Computes the norm of subvector of a vector defined
70: by a starting point and a stride.
72: Collective on Vec
74: Input Parameter:
75: + v - the vector
76: . start - starting point of the subvector (defined by a stride)
77: - ntype - type of norm, one of NORM_1, NORM_2, NORM_INFINITY
79: Output Parameter:
80: . norm - the norm
82: Notes:
83: One must call VecSetBlockSize() before this routine to set the stride
84: information, or use a vector created from a multicomponent DA.
86: If x is the array representing the vector x then this computes the norm
87: of the array (x[start],x[start+stride],x[start+2*stride], ....)
89: This is useful for computing, say the norm of the pressure variable when
90: the pressure is stored (interlaced) with other variables, say density etc.
92: This will only work if the desire subvector is a stride subvector
94: Level: advanced
96: Concepts: norm^on stride of vector
97: Concepts: stride^norm
99: .seealso: VecNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMin(), VecStrideMax()
100: @*/
101: PetscErrorCode VecStrideNorm(Vec v,PetscInt start,NormType ntype,PetscReal *nrm)
102: {
104: PetscInt i,n,bs;
105: PetscScalar *x;
106: PetscReal tnorm;
107: MPI_Comm comm;
112: VecGetLocalSize(v,&n);
113: VecGetArray(v,&x);
114: PetscObjectGetComm((PetscObject)v,&comm);
116: bs = v->map.bs;
117: if (start < 0) {
118: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
119: } else if (start >= bs) {
120: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Start of stride subvector (%D) is too large for stride\n\
121: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
122: }
123: x += start;
125: if (ntype == NORM_2) {
126: PetscScalar sum = 0.0;
127: for (i=0; i<n; i+=bs) {
128: sum += x[i]*(PetscConj(x[i]));
129: }
130: tnorm = PetscRealPart(sum);
131: MPI_Allreduce(&tnorm,nrm,1,MPIU_REAL,MPI_SUM,comm);
132: *nrm = sqrt(*nrm);
133: } else if (ntype == NORM_1) {
134: tnorm = 0.0;
135: for (i=0; i<n; i+=bs) {
136: tnorm += PetscAbsScalar(x[i]);
137: }
138: MPI_Allreduce(&tnorm,nrm,1,MPIU_REAL,MPI_SUM,comm);
139: } else if (ntype == NORM_INFINITY) {
140: PetscReal tmp;
141: tnorm = 0.0;
143: for (i=0; i<n; i+=bs) {
144: if ((tmp = PetscAbsScalar(x[i])) > tnorm) tnorm = tmp;
145: /* check special case of tmp == NaN */
146: if (tmp != tmp) {tnorm = tmp; break;}
147: }
148: MPI_Allreduce(&tnorm,nrm,1,MPIU_REAL,MPI_MAX,comm);
149: } else {
150: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown norm type");
151: }
153: VecRestoreArray(v,&x);
154: return(0);
155: }
159: /*@
160: VecStrideMax - Computes the maximum of subvector of a vector defined
161: by a starting point and a stride and optionally its location.
163: Collective on Vec
165: Input Parameter:
166: + v - the vector
167: - start - starting point of the subvector (defined by a stride)
169: Output Parameter:
170: + index - the location where the maximum occurred (pass PETSC_NULL if not required)
171: - nrm - the max
173: Notes:
174: One must call VecSetBlockSize() before this routine to set the stride
175: information, or use a vector created from a multicomponent DA.
177: If xa is the array representing the vector x, then this computes the max
178: of the array (xa[start],xa[start+stride],xa[start+2*stride], ....)
180: This is useful for computing, say the maximum of the pressure variable when
181: the pressure is stored (interlaced) with other variables, e.g., density, etc.
182: This will only work if the desire subvector is a stride subvector.
184: Level: advanced
186: Concepts: maximum^on stride of vector
187: Concepts: stride^maximum
189: .seealso: VecMax(), VecStrideNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMin()
190: @*/
191: PetscErrorCode VecStrideMax(Vec v,PetscInt start,PetscInt *idex,PetscReal *nrm)
192: {
194: PetscInt i,n,bs,id;
195: PetscScalar *x;
196: PetscReal max,tmp;
197: MPI_Comm comm;
203: VecGetLocalSize(v,&n);
204: VecGetArray(v,&x);
205: PetscObjectGetComm((PetscObject)v,&comm);
207: bs = v->map.bs;
208: if (start < 0) {
209: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
210: } else if (start >= bs) {
211: SETERRQ2(PETSC_ERR_ARG_WRONG,"Start of stride subvector (%D) is too large for stride\n\
212: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
213: }
214: x += start;
216: id = -1;
217: if (!n) {
218: max = PETSC_MIN;
219: } else {
220: id = 0;
221: #if defined(PETSC_USE_COMPLEX)
222: max = PetscRealPart(x[0]);
223: #else
224: max = x[0];
225: #endif
226: for (i=bs; i<n; i+=bs) {
227: #if defined(PETSC_USE_COMPLEX)
228: if ((tmp = PetscRealPart(x[i])) > max) { max = tmp; id = i;}
229: #else
230: if ((tmp = x[i]) > max) { max = tmp; id = i;}
231: #endif
232: }
233: }
234: VecRestoreArray(v,&x);
236: if (!idex) {
237: MPI_Allreduce(&max,nrm,1,MPIU_REAL,MPI_MAX,comm);
238: } else {
239: PetscReal in[2],out[2];
240: PetscInt rstart;
242: VecGetOwnershipRange(v,&rstart,PETSC_NULL);
243: in[0] = max;
244: in[1] = rstart+id;
245: MPI_Allreduce(in,out,2,MPIU_REAL,VecMax_Local_Op,v->comm);
246: *nrm = out[0];
247: *idex = (PetscInt)out[1];
248: }
250: return(0);
251: }
255: /*@
256: VecStrideMin - Computes the minimum of subvector of a vector defined
257: by a starting point and a stride and optionally its location.
259: Collective on Vec
261: Input Parameter:
262: + v - the vector
263: - start - starting point of the subvector (defined by a stride)
265: Output Parameter:
266: + idex - the location where the minimum occurred. (pass PETSC_NULL if not required)
267: - nrm - the min
269: Level: advanced
271: Notes:
272: One must call VecSetBlockSize() before this routine to set the stride
273: information, or use a vector created from a multicomponent DA.
275: If xa is the array representing the vector x, then this computes the min
276: of the array (xa[start],xa[start+stride],xa[start+2*stride], ....)
278: This is useful for computing, say the minimum of the pressure variable when
279: the pressure is stored (interlaced) with other variables, e.g., density, etc.
280: This will only work if the desire subvector is a stride subvector.
282: Concepts: minimum^on stride of vector
283: Concepts: stride^minimum
285: .seealso: VecMin(), VecStrideNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMax()
286: @*/
287: PetscErrorCode VecStrideMin(Vec v,PetscInt start,PetscInt *idex,PetscReal *nrm)
288: {
290: PetscInt i,n,bs,id;
291: PetscScalar *x;
292: PetscReal min,tmp;
293: MPI_Comm comm;
299: VecGetLocalSize(v,&n);
300: VecGetArray(v,&x);
301: PetscObjectGetComm((PetscObject)v,&comm);
303: bs = v->map.bs;
304: if (start < 0) {
305: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
306: } else if (start >= bs) {
307: SETERRQ2(PETSC_ERR_ARG_WRONG,"Start of stride subvector (%D) is too large for stride\n\
308: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
309: }
310: x += start;
312: id = -1;
313: if (!n) {
314: min = PETSC_MAX;
315: } else {
316: id = 0;
317: #if defined(PETSC_USE_COMPLEX)
318: min = PetscRealPart(x[0]);
319: #else
320: min = x[0];
321: #endif
322: for (i=bs; i<n; i+=bs) {
323: #if defined(PETSC_USE_COMPLEX)
324: if ((tmp = PetscRealPart(x[i])) < min) { min = tmp; id = i;}
325: #else
326: if ((tmp = x[i]) < min) { min = tmp; id = i;}
327: #endif
328: }
329: }
330: VecRestoreArray(v,&x);
332: if (!idex) {
333: MPI_Allreduce(&min,nrm,1,MPIU_REAL,MPI_MIN,comm);
334: } else {
335: PetscReal in[2],out[2];
336: PetscInt rstart;
338: VecGetOwnershipRange(v,&rstart,PETSC_NULL);
339: in[0] = min;
340: in[1] = rstart+id;
341: MPI_Allreduce(in,out,2,MPIU_REAL,VecMin_Local_Op,v->comm);
342: *nrm = out[0];
343: *idex = (PetscInt)out[1];
344: }
346: return(0);
347: }
351: /*@
352: VecStrideScaleAll - Scales the subvectors of a vector defined
353: by a starting point and a stride.
355: Collective on Vec
357: Input Parameter:
358: + v - the vector
359: - scales - values to multiply each subvector entry by
361: Notes:
362: One must call VecSetBlockSize() before this routine to set the stride
363: information, or use a vector created from a multicomponent DA.
366: Level: advanced
368: Concepts: scale^on stride of vector
369: Concepts: stride^scale
371: .seealso: VecNorm(), VecStrideScale(), VecScale(), VecStrideGather(), VecStrideScatter(), VecStrideMin(), VecStrideMax()
372: @*/
373: PetscErrorCode VecStrideScaleAll(Vec v,PetscScalar *scales)
374: {
376: PetscInt i,j,n,bs;
377: PetscScalar *x;
382: VecGetLocalSize(v,&n);
383: VecGetArray(v,&x);
385: bs = v->map.bs;
387: /* need to provide optimized code for each bs */
388: for (i=0; i<n; i+=bs) {
389: for (j=0; j<bs; j++) {
390: x[i+j] *= scales[j];
391: }
392: }
393: VecRestoreArray(v,&x);
394: return(0);
395: }
399: /*@
400: VecStrideNormAll - Computes the norms subvectors of a vector defined
401: by a starting point and a stride.
403: Collective on Vec
405: Input Parameter:
406: + v - the vector
407: - ntype - type of norm, one of NORM_1, NORM_2, NORM_INFINITY
409: Output Parameter:
410: . nrm - the norms
412: Notes:
413: One must call VecSetBlockSize() before this routine to set the stride
414: information, or use a vector created from a multicomponent DA.
416: If x is the array representing the vector x then this computes the norm
417: of the array (x[start],x[start+stride],x[start+2*stride], ....)
419: This is useful for computing, say the norm of the pressure variable when
420: the pressure is stored (interlaced) with other variables, say density etc.
422: This will only work if the desire subvector is a stride subvector
424: Level: advanced
426: Concepts: norm^on stride of vector
427: Concepts: stride^norm
429: .seealso: VecNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMin(), VecStrideMax()
430: @*/
431: PetscErrorCode VecStrideNormAll(Vec v,NormType ntype,PetscReal *nrm)
432: {
434: PetscInt i,j,n,bs;
435: PetscScalar *x;
436: PetscReal tnorm[128];
437: MPI_Comm comm;
442: VecGetLocalSize(v,&n);
443: VecGetArray(v,&x);
444: PetscObjectGetComm((PetscObject)v,&comm);
446: bs = v->map.bs;
447: if (bs > 128) SETERRQ(PETSC_ERR_SUP,"Currently supports only blocksize up to 128");
449: if (ntype == NORM_2) {
450: PetscScalar sum[128];
451: for (j=0; j<bs; j++) sum[j] = 0.0;
452: for (i=0; i<n; i+=bs) {
453: for (j=0; j<bs; j++) {
454: sum[j] += x[i+j]*(PetscConj(x[i+j]));
455: }
456: }
457: for (j=0; j<bs; j++) {
458: tnorm[j] = PetscRealPart(sum[j]);
459: }
460: MPI_Allreduce(tnorm,nrm,bs,MPIU_REAL,MPI_SUM,comm);
461: for (j=0; j<bs; j++) {
462: nrm[j] = sqrt(nrm[j]);
463: }
464: } else if (ntype == NORM_1) {
465: for (j=0; j<bs; j++) {
466: tnorm[j] = 0.0;
467: }
468: for (i=0; i<n; i+=bs) {
469: for (j=0; j<bs; j++) {
470: tnorm[j] += PetscAbsScalar(x[i+j]);
471: }
472: }
473: MPI_Allreduce(tnorm,nrm,bs,MPIU_REAL,MPI_SUM,comm);
474: } else if (ntype == NORM_INFINITY) {
475: PetscReal tmp;
476: for (j=0; j<bs; j++) {
477: tnorm[j] = 0.0;
478: }
480: for (i=0; i<n; i+=bs) {
481: for (j=0; j<bs; j++) {
482: if ((tmp = PetscAbsScalar(x[i+j])) > tnorm[j]) tnorm[j] = tmp;
483: /* check special case of tmp == NaN */
484: if (tmp != tmp) {tnorm[j] = tmp; break;}
485: }
486: }
487: MPI_Allreduce(tnorm,nrm,bs,MPIU_REAL,MPI_MAX,comm);
488: } else {
489: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown norm type");
490: }
492: VecRestoreArray(v,&x);
493: return(0);
494: }
498: /*@
499: VecStrideMaxAll - Computes the maximums of subvectors of a vector defined
500: by a starting point and a stride and optionally its location.
502: Collective on Vec
504: Input Parameter:
505: . v - the vector
507: Output Parameter:
508: + index - the location where the maximum occurred (not supported, pass PETSC_NULL,
509: if you need this, send mail to petsc-maint@mcs.anl.gov to request it)
510: - nrm - the maximums
512: Notes:
513: One must call VecSetBlockSize() before this routine to set the stride
514: information, or use a vector created from a multicomponent DA.
516: This is useful for computing, say the maximum of the pressure variable when
517: the pressure is stored (interlaced) with other variables, e.g., density, etc.
518: This will only work if the desire subvector is a stride subvector.
520: Level: advanced
522: Concepts: maximum^on stride of vector
523: Concepts: stride^maximum
525: .seealso: VecMax(), VecStrideNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMin()
526: @*/
527: PetscErrorCode VecStrideMaxAll(Vec v,PetscInt *idex,PetscReal *nrm)
528: {
530: PetscInt i,j,n,bs;
531: PetscScalar *x;
532: PetscReal max[128],tmp;
533: MPI_Comm comm;
538: if (idex) {
539: SETERRQ(PETSC_ERR_SUP,"No support yet for returning index; send mail to petsc-maint@mcs.anl.gov asking for it");
540: }
541: VecGetLocalSize(v,&n);
542: VecGetArray(v,&x);
543: PetscObjectGetComm((PetscObject)v,&comm);
545: bs = v->map.bs;
546: if (bs > 128) SETERRQ(PETSC_ERR_SUP,"Currently supports only blocksize up to 128");
548: if (!n) {
549: for (j=0; j<bs; j++) {
550: max[j] = PETSC_MIN;
551: }
552: } else {
553: for (j=0; j<bs; j++) {
554: #if defined(PETSC_USE_COMPLEX)
555: max[j] = PetscRealPart(x[j]);
556: #else
557: max[j] = x[j];
558: #endif
559: }
560: for (i=bs; i<n; i+=bs) {
561: for (j=0; j<bs; j++) {
562: #if defined(PETSC_USE_COMPLEX)
563: if ((tmp = PetscRealPart(x[i+j])) > max[j]) { max[j] = tmp;}
564: #else
565: if ((tmp = x[i+j]) > max[j]) { max[j] = tmp; }
566: #endif
567: }
568: }
569: }
570: MPI_Allreduce(max,nrm,bs,MPIU_REAL,MPI_MAX,comm);
572: VecRestoreArray(v,&x);
573: return(0);
574: }
578: /*@
579: VecStrideMinAll - Computes the minimum of subvector of a vector defined
580: by a starting point and a stride and optionally its location.
582: Collective on Vec
584: Input Parameter:
585: . v - the vector
587: Output Parameter:
588: + idex - the location where the minimum occurred (not supported, pass PETSC_NULL,
589: if you need this, send mail to petsc-maint@mcs.anl.gov to request it)
590: - nrm - the minimums
592: Level: advanced
594: Notes:
595: One must call VecSetBlockSize() before this routine to set the stride
596: information, or use a vector created from a multicomponent DA.
598: This is useful for computing, say the minimum of the pressure variable when
599: the pressure is stored (interlaced) with other variables, e.g., density, etc.
600: This will only work if the desire subvector is a stride subvector.
602: Concepts: minimum^on stride of vector
603: Concepts: stride^minimum
605: .seealso: VecMin(), VecStrideNorm(), VecStrideGather(), VecStrideScatter(), VecStrideMax()
606: @*/
607: PetscErrorCode VecStrideMinAll(Vec v,PetscInt *idex,PetscReal *nrm)
608: {
610: PetscInt i,n,bs,j;
611: PetscScalar *x;
612: PetscReal min[128],tmp;
613: MPI_Comm comm;
618: if (idex) {
619: SETERRQ(PETSC_ERR_SUP,"No support yet for returning index; send mail to petsc-maint@mcs.anl.gov asking for it");
620: }
621: VecGetLocalSize(v,&n);
622: VecGetArray(v,&x);
623: PetscObjectGetComm((PetscObject)v,&comm);
625: bs = v->map.bs;
626: if (bs > 128) SETERRQ(PETSC_ERR_SUP,"Currently supports only blocksize up to 128");
628: if (!n) {
629: for (j=0; j<bs; j++) {
630: min[j] = PETSC_MAX;
631: }
632: } else {
633: for (j=0; j<bs; j++) {
634: #if defined(PETSC_USE_COMPLEX)
635: min[j] = PetscRealPart(x[j]);
636: #else
637: min[j] = x[j];
638: #endif
639: }
640: for (i=bs; i<n; i+=bs) {
641: for (j=0; j<bs; j++) {
642: #if defined(PETSC_USE_COMPLEX)
643: if ((tmp = PetscRealPart(x[i+j])) < min[j]) { min[j] = tmp;}
644: #else
645: if ((tmp = x[i+j]) < min[j]) { min[j] = tmp; }
646: #endif
647: }
648: }
649: }
650: MPI_Allreduce(min,nrm,bs,MPIU_REAL,MPI_MIN,comm);
652: VecRestoreArray(v,&x);
653: return(0);
654: }
656: /*----------------------------------------------------------------------------------------------*/
659: /*@
660: VecStrideGatherAll - Gathers all the single components from a multi-component vector into
661: separate vectors.
663: Collective on Vec
665: Input Parameter:
666: + v - the vector
667: - addv - one of ADD_VALUES,INSERT_VALUES,MAX_VALUES
669: Output Parameter:
670: . s - the location where the subvectors are stored
672: Notes:
673: One must call VecSetBlockSize() before this routine to set the stride
674: information, or use a vector created from a multicomponent DA.
676: If x is the array representing the vector x then this gathers
677: the arrays (x[start],x[start+stride],x[start+2*stride], ....)
678: for start=0,1,2,...bs-1
680: The parallel layout of the vector and the subvector must be the same;
681: i.e., nlocal of v = stride*(nlocal of s)
683: Not optimized; could be easily
685: Level: advanced
687: Concepts: gather^into strided vector
689: .seealso: VecStrideNorm(), VecStrideScatter(), VecStrideMin(), VecStrideMax(), VecStrideGather(),
690: VecStrideScatterAll()
691: @*/
692: PetscErrorCode VecStrideGatherAll(Vec v,Vec *s,InsertMode addv)
693: {
695: PetscInt i,n,bs,j,k,*bss = PETSC_NULL,nv,jj,nvc;
696: PetscScalar *x,**y;
702: VecGetLocalSize(v,&n);
703: VecGetArray(v,&x);
704: bs = v->map.bs;
705: if (bs < 0) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Input vector does not have a valid blocksize set");
706: PetscMalloc2(bs,PetscReal*,&y,bs,PetscInt,&bss);
707: nv = 0;
708: nvc = 0;
709: for (i=0; i<bs; i++) {
710: VecGetBlockSize(s[i],&bss[i]);
711: if (bss[i] < 1) bss[i] = 1; /* if user never set it then assume 1 Re: [PETSC #8241] VecStrideGatherAll */
712: VecGetArray(s[i],&y[i]);
713: nvc += bss[i];
714: nv++;
715: if (nvc > bs) SETERRQ(PETSC_ERR_ARG_INCOMP,"Number of subvectors in subvectors > number of vectors in main vector");
716: if (nvc == bs) break;
717: }
719: n = n/bs;
721: jj = 0;
722: if (addv == INSERT_VALUES) {
723: for (j=0; j<nv; j++) {
724: for (k=0; k<bss[j]; k++) {
725: for (i=0; i<n; i++) {
726: y[j][i*bss[j] + k] = x[bs*i+jj+k];
727: }
728: }
729: jj += bss[j];
730: }
731: } else if (addv == ADD_VALUES) {
732: for (j=0; j<nv; j++) {
733: for (k=0; k<bss[j]; k++) {
734: for (i=0; i<n; i++) {
735: y[j][i*bss[j] + k] += x[bs*i+jj+k];
736: }
737: }
738: jj += bss[j];
739: }
740: #if !defined(PETSC_USE_COMPLEX)
741: } else if (addv == MAX_VALUES) {
742: for (j=0; j<nv; j++) {
743: for (k=0; k<bss[j]; k++) {
744: for (i=0; i<n; i++) {
745: y[j][i*bss[j] + k] = PetscMax(y[j][i*bss[j] + k],x[bs*i+jj+k]);
746: }
747: }
748: jj += bss[j];
749: }
750: #endif
751: } else {
752: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown insert type");
753: }
755: VecRestoreArray(v,&x);
756: for (i=0; i<nv; i++) {
757: VecRestoreArray(s[i],&y[i]);
758: }
760: PetscFree2(y,bss);
761: return(0);
762: }
766: /*@
767: VecStrideScatterAll - Scatters all the single components from separate vectors into
768: a multi-component vector.
770: Collective on Vec
772: Input Parameter:
773: + s - the location where the subvectors are stored
774: - addv - one of ADD_VALUES,INSERT_VALUES,MAX_VALUES
776: Output Parameter:
777: . v - the multicomponent vector
779: Notes:
780: One must call VecSetBlockSize() before this routine to set the stride
781: information, or use a vector created from a multicomponent DA.
783: The parallel layout of the vector and the subvector must be the same;
784: i.e., nlocal of v = stride*(nlocal of s)
786: Not optimized; could be easily
788: Level: advanced
790: Concepts: scatter^into strided vector
792: .seealso: VecStrideNorm(), VecStrideScatter(), VecStrideMin(), VecStrideMax(), VecStrideGather(),
793: VecStrideScatterAll()
794: @*/
795: PetscErrorCode VecStrideScatterAll(Vec *s,Vec v,InsertMode addv)
796: {
798: PetscInt i,n,bs,j,jj,k,*bss = PETSC_NULL,nv,nvc;
799: PetscScalar *x,**y;
805: VecGetLocalSize(v,&n);
806: VecGetArray(v,&x);
807: bs = v->map.bs;
808: if (bs < 0) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Input vector does not have a valid blocksize set");
810: PetscMalloc2(bs,PetscScalar**,&y,bs,PetscInt,&bss);
811: nv = 0;
812: nvc = 0;
813: for (i=0; i<bs; i++) {
814: VecGetBlockSize(s[i],&bss[i]);
815: if (bss[i] < 1) bss[i] = 1; /* if user never set it then assume 1 Re: [PETSC #8241] VecStrideGatherAll */
816: VecGetArray(s[i],&y[i]);
817: nvc += bss[i];
818: nv++;
819: if (nvc > bs) SETERRQ(PETSC_ERR_ARG_INCOMP,"Number of subvectors in subvectors > number of vectors in main vector");
820: if (nvc == bs) break;
821: }
823: n = n/bs;
825: jj = 0;
826: if (addv == INSERT_VALUES) {
827: for (j=0; j<nv; j++) {
828: for (k=0; k<bss[j]; k++) {
829: for (i=0; i<n; i++) {
830: x[bs*i+jj+k] = y[j][i*bss[j] + k];
831: }
832: }
833: jj += bss[j];
834: }
835: } else if (addv == ADD_VALUES) {
836: for (j=0; j<nv; j++) {
837: for (k=0; k<bss[j]; k++) {
838: for (i=0; i<n; i++) {
839: x[bs*i+jj+k] += y[j][i*bss[j] + k];
840: }
841: }
842: jj += bss[j];
843: }
844: #if !defined(PETSC_USE_COMPLEX)
845: } else if (addv == MAX_VALUES) {
846: for (j=0; j<nv; j++) {
847: for (k=0; k<bss[j]; k++) {
848: for (i=0; i<n; i++) {
849: x[bs*i+jj+k] = PetscMax(x[bs*i+jj+k],y[j][i*bss[j] + k]);
850: }
851: }
852: jj += bss[j];
853: }
854: #endif
855: } else {
856: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown insert type");
857: }
859: VecRestoreArray(v,&x);
860: for (i=0; i<nv; i++) {
861: VecRestoreArray(s[i],&y[i]);
862: }
863: PetscFree2(y,bss);
864: return(0);
865: }
869: /*@
870: VecStrideGather - Gathers a single component from a multi-component vector into
871: another vector.
873: Collective on Vec
875: Input Parameter:
876: + v - the vector
877: . start - starting point of the subvector (defined by a stride)
878: - addv - one of ADD_VALUES,INSERT_VALUES,MAX_VALUES
880: Output Parameter:
881: . s - the location where the subvector is stored
883: Notes:
884: One must call VecSetBlockSize() before this routine to set the stride
885: information, or use a vector created from a multicomponent DA.
887: If x is the array representing the vector x then this gathers
888: the array (x[start],x[start+stride],x[start+2*stride], ....)
890: The parallel layout of the vector and the subvector must be the same;
891: i.e., nlocal of v = stride*(nlocal of s)
893: Not optimized; could be easily
895: Level: advanced
897: Concepts: gather^into strided vector
899: .seealso: VecStrideNorm(), VecStrideScatter(), VecStrideMin(), VecStrideMax(), VecStrideGatherAll(),
900: VecStrideScatterAll()
901: @*/
902: PetscErrorCode VecStrideGather(Vec v,PetscInt start,Vec s,InsertMode addv)
903: {
905: PetscInt i,n,bs,ns;
906: PetscScalar *x,*y;
911: VecGetLocalSize(v,&n);
912: VecGetLocalSize(s,&ns);
913: VecGetArray(v,&x);
914: VecGetArray(s,&y);
916: bs = v->map.bs;
917: if (start < 0) {
918: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
919: } else if (start >= bs) {
920: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Start of stride subvector (%D) is too large for stride\n\
921: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
922: }
923: if (n != ns*bs) {
924: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Subvector length * blocksize %D not correct for gather from original vector %D",ns*bs,n);
925: }
926: x += start;
927: n = n/bs;
929: if (addv == INSERT_VALUES) {
930: for (i=0; i<n; i++) {
931: y[i] = x[bs*i];
932: }
933: } else if (addv == ADD_VALUES) {
934: for (i=0; i<n; i++) {
935: y[i] += x[bs*i];
936: }
937: #if !defined(PETSC_USE_COMPLEX)
938: } else if (addv == MAX_VALUES) {
939: for (i=0; i<n; i++) {
940: y[i] = PetscMax(y[i],x[bs*i]);
941: }
942: #endif
943: } else {
944: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown insert type");
945: }
947: VecRestoreArray(v,&x);
948: VecRestoreArray(s,&y);
949: return(0);
950: }
954: /*@
955: VecStrideScatter - Scatters a single component from a vector into a multi-component vector.
957: Collective on Vec
959: Input Parameter:
960: + s - the single-component vector
961: . start - starting point of the subvector (defined by a stride)
962: - addv - one of ADD_VALUES,INSERT_VALUES,MAX_VALUES
964: Output Parameter:
965: . v - the location where the subvector is scattered (the multi-component vector)
967: Notes:
968: One must call VecSetBlockSize() on the multi-component vector before this
969: routine to set the stride information, or use a vector created from a multicomponent DA.
971: The parallel layout of the vector and the subvector must be the same;
972: i.e., nlocal of v = stride*(nlocal of s)
974: Not optimized; could be easily
976: Level: advanced
978: Concepts: scatter^into strided vector
980: .seealso: VecStrideNorm(), VecStrideGather(), VecStrideMin(), VecStrideMax(), VecStrideGatherAll(),
981: VecStrideScatterAll()
982: @*/
983: PetscErrorCode VecStrideScatter(Vec s,PetscInt start,Vec v,InsertMode addv)
984: {
986: PetscInt i,n,bs,ns;
987: PetscScalar *x,*y;
992: VecGetLocalSize(v,&n);
993: VecGetLocalSize(s,&ns);
994: VecGetArray(v,&x);
995: VecGetArray(s,&y);
997: bs = v->map.bs;
998: if (start < 0) {
999: SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Negative start %D",start);
1000: } else if (start >= bs) {
1001: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Start of stride subvector (%D) is too large for stride\n\
1002: Have you set the vector blocksize (%D) correctly with VecSetBlockSize()?",start,bs);
1003: }
1004: if (n != ns*bs) {
1005: SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Subvector length * blocksize %D not correct for scatter to multicomponent vector %D",ns*bs,n);
1006: }
1007: x += start;
1008: n = n/bs;
1011: if (addv == INSERT_VALUES) {
1012: for (i=0; i<n; i++) {
1013: x[bs*i] = y[i];
1014: }
1015: } else if (addv == ADD_VALUES) {
1016: for (i=0; i<n; i++) {
1017: x[bs*i] += y[i];
1018: }
1019: #if !defined(PETSC_USE_COMPLEX)
1020: } else if (addv == MAX_VALUES) {
1021: for (i=0; i<n; i++) {
1022: x[bs*i] = PetscMax(y[i],x[bs*i]);
1023: }
1024: #endif
1025: } else {
1026: SETERRQ(PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown insert type");
1027: }
1030: VecRestoreArray(v,&x);
1031: VecRestoreArray(s,&y);
1032: return(0);
1033: }
1037: PetscErrorCode VecReciprocal_Default(Vec v)
1038: {
1040: PetscInt i,n;
1041: PetscScalar *x;
1044: VecGetLocalSize(v,&n);
1045: VecGetArray(v,&x);
1046: for (i=0; i<n; i++) {
1047: if (x[i] != 0.0) x[i] = 1.0/x[i];
1048: }
1049: VecRestoreArray(v,&x);
1050: return(0);
1051: }
1055: /*@
1056: VecSqrt - Replaces each component of a vector by the square root of its magnitude.
1058: Not collective
1060: Input Parameter:
1061: . v - The vector
1063: Output Parameter:
1064: . v - The vector square root
1066: Level: beginner
1068: Note: The actual function is sqrt(|x_i|)
1070: .keywords: vector, sqrt, square root
1071: @*/
1072: PetscErrorCode VecSqrt(Vec v)
1073: {
1074: PetscScalar *x;
1075: PetscInt i, n;
1080: VecGetLocalSize(v, &n);
1081: VecGetArray(v, &x);
1082: for(i = 0; i < n; i++) {
1083: x[i] = sqrt(PetscAbsScalar(x[i]));
1084: }
1085: VecRestoreArray(v, &x);
1086: return(0);
1087: }
1091: /*@
1092: VecSum - Computes the sum of all the components of a vector.
1094: Collective on Vec
1096: Input Parameter:
1097: . v - the vector
1099: Output Parameter:
1100: . sum - the result
1102: Level: beginner
1104: Concepts: sum^of vector entries
1106: .seealso: VecNorm()
1107: @*/
1108: PetscErrorCode VecSum(Vec v,PetscScalar *sum)
1109: {
1111: PetscInt i,n;
1112: PetscScalar *x,lsum = 0.0;
1117: VecGetLocalSize(v,&n);
1118: VecGetArray(v,&x);
1119: for (i=0; i<n; i++) {
1120: lsum += x[i];
1121: }
1122: MPI_Allreduce(&lsum,sum,1,MPIU_SCALAR,PetscSum_Op,v->comm);
1123: VecRestoreArray(v,&x);
1124: return(0);
1125: }
1129: /*@
1130: VecShift - Shifts all of the components of a vector by computing
1131: x[i] = x[i] + shift.
1133: Collective on Vec
1135: Input Parameters:
1136: + v - the vector
1137: - shift - the shift
1139: Output Parameter:
1140: . v - the shifted vector
1142: Level: intermediate
1144: Concepts: vector^adding constant
1146: @*/
1147: PetscErrorCode VecShift(Vec v,PetscScalar shift)
1148: {
1150: PetscInt i,n;
1151: PetscScalar *x;
1155: VecGetLocalSize(v,&n);
1156: VecGetArray(v,&x);
1157: for (i=0; i<n; i++) {
1158: x[i] += shift;
1159: }
1160: VecRestoreArray(v,&x);
1161: return(0);
1162: }
1166: /*@
1167: VecAbs - Replaces every element in a vector with its absolute value.
1169: Collective on Vec
1171: Input Parameters:
1172: . v - the vector
1174: Level: intermediate
1176: Concepts: vector^absolute value
1178: @*/
1179: PetscErrorCode VecAbs(Vec v)
1180: {
1182: PetscInt i,n;
1183: PetscScalar *x;
1187: VecGetLocalSize(v,&n);
1188: VecGetArray(v,&x);
1189: for (i=0; i<n; i++) {
1190: x[i] = PetscAbsScalar(x[i]);
1191: }
1192: VecRestoreArray(v,&x);
1193: return(0);
1194: }
1198: /*@
1199: VecPermute - Permutes a vector in place using the given ordering.
1201: Input Parameters:
1202: + vec - The vector
1203: . order - The ordering
1204: - inv - The flag for inverting the permutation
1206: Level: beginner
1208: Note: This function does not yet support parallel Index Sets
1210: .seealso: MatPermute()
1211: .keywords: vec, permute
1212: @*/
1213: PetscErrorCode VecPermute(Vec x, IS row, PetscTruth inv)
1214: {
1215: PetscScalar *array, *newArray;
1216: PetscInt *idx;
1217: PetscInt i;
1221: ISGetIndices(row, &idx);
1222: VecGetArray(x, &array);
1223: PetscMalloc(x->map.n*sizeof(PetscScalar), &newArray);
1224: #ifdef PETSC_USE_DEBUG
1225: for(i = 0; i < x->map.n; i++) {
1226: if ((idx[i] < 0) || (idx[i] >= x->map.n)) {
1227: SETERRQ2(PETSC_ERR_ARG_CORRUPT, "Permutation index %D is out of bounds: %D", i, idx[i]);
1228: }
1229: }
1230: #endif
1231: if (!inv) {
1232: for(i = 0; i < x->map.n; i++) newArray[i] = array[idx[i]];
1233: } else {
1234: for(i = 0; i < x->map.n; i++) newArray[idx[i]] = array[i];
1235: }
1236: VecRestoreArray(x, &array);
1237: ISRestoreIndices(row, &idx);
1238: VecReplaceArray(x, newArray);
1239: return(0);
1240: }
1244: /*@
1245: VecEqual - Compares two vectors.
1247: Collective on Vec
1249: Input Parameters:
1250: + vec1 - the first vector
1251: - vec2 - the second vector
1253: Output Parameter:
1254: . flg - PETSC_TRUE if the vectors are equal; PETSC_FALSE otherwise.
1256: Level: intermediate
1258: Concepts: equal^two vectors
1259: Concepts: vector^equality
1261: @*/
1262: PetscErrorCode VecEqual(Vec vec1,Vec vec2,PetscTruth *flg)
1263: {
1264: PetscScalar *v1,*v2;
1266: PetscInt n1,n2,N1,N2;
1267: PetscInt state1,state2;
1268: PetscTruth flg1;
1269:
1274: if (vec1 == vec2) {
1275: *flg = PETSC_TRUE;
1276: } else {
1277: VecGetSize(vec1,&N1);
1278: VecGetSize(vec2,&N2);
1279: if (N1 != N2) {
1280: flg1 = PETSC_FALSE;
1281: } else {
1282: VecGetLocalSize(vec1,&n1);
1283: VecGetLocalSize(vec2,&n2);
1284: if (n1 != n2) {
1285: flg1 = PETSC_FALSE;
1286: } else {
1287: PetscObjectStateQuery((PetscObject) vec1,&state1);
1288: PetscObjectStateQuery((PetscObject) vec2,&state2);
1289: VecGetArray(vec1,&v1);
1290: VecGetArray(vec2,&v2);
1291: PetscMemcmp(v1,v2,n1*sizeof(PetscScalar),&flg1);
1292: VecRestoreArray(vec1,&v1);
1293: VecRestoreArray(vec2,&v2);
1294: PetscObjectSetState((PetscObject) vec1,state1);
1295: PetscObjectSetState((PetscObject) vec2,state2);
1296: }
1297: }
1298: /* combine results from all processors */
1299: MPI_Allreduce(&flg1,flg,1,MPI_INT,MPI_MIN,vec1->comm);
1300: }
1301: return(0);
1302: }