
Verilator 3.833 Internals Manual

Wilson Snyder
http://www.veripool.org

2012-04-15

1



Verilator 3.833 Internals Manual CONTENTS

Contents

1 NAME 2

2 INTRODUCTION 2

3 ADDING A NEW FEATURE 2

4 CODE FLOWS 2

5 CODING CONVENTIONS 5

6 TESTING 8

7 DEBUGGING 8

8 DISTRIBUTION 10

1



Verilator 3.833 Internals Manual 4 CODE FLOWS

1 NAME

Verilator Internals

2 INTRODUCTION

This file discusses internal and programming details for Verilator. It’s the first for
reference for developers and debugging problems.

See also the Verilator internals presentation at http://www.veripool.org.

3 ADDING A NEW FEATURE

Generally what would you do to add a new feature?

File a bug (if there isn’t already) so others know what you’re working on.

Make a testcase in the test_regress/t/t_EXAMPLE format, see TESTING Below.

If grammar changes are needed, look at the git version of VerilogPerl’s src/VParseGrammar.y,
as this grammar supports the full SystemVerilog language and has a lot of back-and-
forth with Verilator’s grammar. Copy the appropriate rules to src/verilog.y and
modify the productions.

If a new Ast type is needed, add it to V3AstNodes.h.

Now you can run "test_regress/t/t_{new testcase}.pl –debug" and it’ll probably
fail but you’ll see a test_regress/obj_dir/t_{newtestcase}/*.tree file which you can
examine to see if the parsing worked. See also the sections below on debugging.

Modify the later visitor functions to process the new feature as needed.

4 CODE FLOWS

Verilator Flow

The main flow of Verilator can be followed by reading the Verilator.cpp process()
function:

First, the files specified on the command line are read. Reading involves prepro-
cessing, then lexical analysis with Flex and parsing with Bison. This produces an

2



Verilator 3.833 Internals Manual 4 CODE FLOWS

abstract syntax tree (AST) representation of the design, which is what is visible in
the .tree files described below.

Verilator then makes a series of passes over the AST, progressively refining and op-
timizing it.

Cells in the AST first linked, which will read and parse additional files as above.

Functions, variable and other references are linked to their definitions.

Parameters are resolved and the design is elaborated.

Verilator then performs many additional edits and optimizations on the hierarchical
design. This includes coverage, assertions, X elimination, inlining, constant propaga-
tion, and dead code elimination.

References in the design are then psudo-flattened. Each module’s variables and func-
tions get "Scope" references. A scope reference is an occurrence of that un-flattened
variable in the flattened hierarchy. A module that occurs only once in the hierarchy
will have a single scope and single VarScope for each variable. A module that occurs
twice will have a scope for each occurrence, and two VarScopes for each variable. This
allows optimizations to proceed across the flattened design, while still preserving the
hierarchy.

Additional edits and optimizations proceed on the psudo-flat design. These include
module references, function inlining, loop unrolling, variable lifetime analysis, lookup
table creation, always splitting, and logic gate simplifications (pushing inverters, etc).

Verilator orders the code. Best case, this results in a single "eval" function which has
all always statements flowing from top to bottom with no loops.

Verilator mostly removes the flattening, so that code may be shared between multiple
invocations of the same module. It localizes variables, combines identical functions,
expands macros to C primitives, adds branch prediction hints, and performs addi-
tional constant propagation.

Verilator finally writes the C++ modules.

Key Classes Used in the Verilator Flow

The AST is represented at the top level by the class AstNode. This abstract class
has derived classes for the individual components (e.g. AstGenerate for a generate
block) or groups of components (e.g. AstNodeFTask for functions and tasks, which
in turn has AstFunc and AstTask as derived classes).

Each AstNode has pointers to up to four children, accessed by the op1p through op4p
methods. These methods are then abstracted in a specific Ast* node class to a more
specific name. For example with the AstIf node (for if statements), ifsp calls op1p

3



Verilator 3.833 Internals Manual 4 CODE FLOWS

to give the pointer to the AST for the "then" block, while elsesp calls op2p to give
the pointer to the AST for the "else" block, or NULL if there is not one.

AstNode has the concept of a next and previous AST - for example the next and
previous statements in a block. Pointers to the AST for these statements (if they
exist) can be obtained using the back and next methods.

It is useful to remember that the derived class AstNetlist is at the top of the tree,
so checking for this class is the standard way to see if you are at the top of the tree.

By convention, each function/method uses the variable nodep as a pointer to the
AstNode currently being processed.

The passes are implemented by AST visitor classes (see Visitor Functions). These are
implemented by subclasses of the abstract class, AstNVisitor. Each pass creates an
instance of the visitor class, which in turn implements a method to perform the pass.

Verilated Flow

The evaluation loop outputted by Verilator is designed to allow a single function to
perform evaluation under most situations.

On the first evaluation, the Verilated code calls initial blocks, and then "settles" the
modules, by evaluating functions (from always statements) until all signals are stable.

On other evaluations, the Verilated code detects what input signals have changes. If
any are clocks, it calls the appropriate sequential functions (from always @ posedge
statements). Interspersed with sequential functions it calls combo functions (from
always @*). After this is complete, it detects any changes due to combo loops or
internally generated clocks, and if one is found must reevaluate the model again.

For SystemC code, the eval() function is wrapped in a SystemC SC_METHOD,
sensitive to all inputs. (Ideally it would only be sensitive to clocks and combo inputs,
but tracing requires all signals to cause evaluation, and the performance difference is
small.)

If tracing is enabled, a callback examines all variables in the design for changes, and
writes the trace for each change. To accelerate this process the evaluation process
records a bitmask of variables that might have changed; if clear, checking those signals
for changes may be skipped.

4



Verilator 3.833 Internals Manual 5 CODING CONVENTIONS

5 CODING CONVENTIONS

Indentation style

To match the indentation of Verilator C++ sources, use 4 spaces per level, and leave
tabs at 8 columns, so every other indent level is a tab stop.

All files should contain the magic header to insure standard indentation:

// -*- mode: C++; c-file-style: "cc-mode" -*-

This sets indentation to the cc-mode defaults. (Verilator predates a CC-mode change
of several years ago which overrides the defaults with GNU style indentation; the
c-set-style undoes that.)

The astgen script

Some of the code implementing passes is extremely repetitive, and must be imple-
mented for each sub-class of AstNode. However, while repetitive, there is more vari-
ability than can be handled in C++ macros.

In Verilator this is implemented by using a Perl script, astgen to pre-process the
C++ code. For example in V3Const.cpp this is used to implement the visit()
functions for each binary operation using the TREEOP macro.

The original C++ source code is transformed into C++ code in the obj_opt and
obj_dbg sub-directories (the former for the optimized version of verilator, the latter
for the debug version). So for example V3Const.cpp into V3Const__gen.cpp.

Visitor Functions

The verilator uses the Visitor design pattern to implement its refinement and opti-
mization passes. This allows separation of the pass algorithm from the AST on which
it operates. Wikipedia provides an introduction to the concept at http://en.wikipedia.org/wiki/Visitor_pattern.

As noted above, all visitors are derived classes of AstNvisitor. All derived classes
of AstNode implement the accept method, which takes as argument a reference
to an instance or a AstNVisitor derived class and applies the visit method of the
AstNVisitor to the invoking AstNode instance (i.e. this).

One possible difficulty is that a call to accept may perform an edit which destroys the
node it receives as argument. The acceptSubtreeReturnEdits method of AstNode
is provided to apply accept and return the resulting node, even if the original node
is destroyed (if it is not destroyed it will just return the original node).

5



Verilator 3.833 Internals Manual 5 CODING CONVENTIONS

The behavior of the visitor classes is achieved by overloading the visit function for
the different AstNode derived classes. If a specific implementation is not found, the
system will look in turn for overloaded implementations up the inheritance hierarchy.
For example calling accept on AstIf will look in turn for:

void visit (AstIf* nodep, AstNUser* vup)
void visit (AstNodeIf* nodep, AstNUser* vup)
void visit (AstNodeStmt* nodep, AstNUser* vup)
void visit (AstNode* nodep, AstNUser* vup)

There are three ways data is passed between visitor functions.

1. A visitor-class member variable. This is generally for passing "parent" informa-
tion down to children. m_modp is a common example. It’s set to NULL in the
constructor, where that node (AstModule visitor) sets it, then the children are
iterated, then it’s cleared. Children under an AstModule will see it set, while
nodes elsewhere will see it clear. If there can be nested items (for example
an AstFor under an AstFor) the variable needs to be save-set-restored in the
AstFor visitor, otherwise exiting the lower for will lose the upper for’s setting.

2. User attributes. Each AstNode (Note. The AST node, not the visitor) has five
user attributes, which may be accessed as an integer using the user1() through
user5() methods, or as a pointer (of type AstNuser) using the user1p()
through user5p() methods (a common technique lifted from graph traversal
packages).

A visitor first clears the one it wants to use by calling AstNode::user#ClearTree(),
then it can mark any node’s user() with whatever data it wants. Readers just
call nodep->user(), but may need to cast appropriately, so you’ll often see
nodep->userp()->castSOMETYPE(). At the top of each visitor are comments
describing how the user() stuff applies to that visitor class. For example:

// NODE STATE
// Cleared entire netlist
// AstModule::user1p() // bool. True to inline this module

This says that at the AstNetlist user1ClearTree() is called. Each AstModule’s
user1() is used to indicate if we’re going to inline it.

These comments are important to make sure a user#() on a given AstNode
type is never being used for two different purposes.

Note that calling user#ClearTree is fast, it doesn’t walk the tree, so it’s ok to
call fairly often. For example, it’s commonly called on every module.

3. Parameters can be passed between the visitors in close to the "normal" function
caller to callee way. This is the second vup parameter of type AstNuser that
is ignored on most of the visitor functions. V3Width does this, but it proved
more messy than the above and is deprecated. (V3Width was nearly the first
module written. Someday this scheme may be removed, as it slows the program
down to have to pass vup everywhere.)

6



Verilator 3.833 Internals Manual 5 CODING CONVENTIONS

Iterators

AstNode provides a set of iterators to facilitate walking over the tree. Each takes
two arguments, a visitor, v, of type AstNVisitor and an optional pointer user data,
vup, of type AstNuser*. The second is one of the ways to pass parameters to visitors
described in Visitor Functions, but its use is no deprecated and should be used for new
visitor classes.

iterate()

This just applies the accept method of the AstNode to the visitor function.

iterateAndNextIgnoreEdit

Applies the accept method of each AstNode in a list (i.e. connected by nextp
and backp pointers).

iterateAndNext

Applies the accept method of each AstNode in a list. If a node is edited by the
call to accept, apply accept again, until the node does not change.

iterateListBackwards

Applies the accept method of each AstNode in a list, starting with the last one.

iterateChildren

Apply the iterateAndNext method on each child op1p through op4p in turn.

iterateChildrenBackwards

Apply the iterateListBackwards method on each child op1p through op4p in
turn.

Identifying derived classes

A common requirement is to identify the specific AstNode class we are dealing with.
For example a visitor might not implement separate visit methods for AstIf and
AstGenIf, but just a single method for the base class:

void visit (AstNodeIf* nodep, AstNUser* vup)

However that method might want to specify additional code if it is called for AstGenIf.
Verilator does this by providing a castSOMETYPE() method for each possible node
type, using C++ dynamic_cast. This either returns a pointer to the object cast to
that type (if it is of class SOMETYPE, or a derived class of SOMETYPE) or else NULL.
So our visit method could use:

if (nodep->castAstGenIf()) {
<code specific to AstGenIf>

}

7



Verilator 3.833 Internals Manual 7 DEBUGGING

A common test is for AstNetlist, which is the node at the root of the AST.

6 TESTING

To write a test see notes in the forum and in the verilator.txt manual.

Note you can run the regression tests in parallel; see the test_regress/driver.pl script
-j flag.

7 DEBUGGING

–debug

When you run with –debug there are two primary output file types placed into the
obj_dir, .tree and .dot files.

.dot output

Dot files are dumps of internal graphs in Graphviz http://www.graphviz.org/ dot for-
mat. When a dot file is dumped, Verilator will also print a line on stdout that can
be used to format the output, for example:

dot -Tps -o ~/a.ps obj_dir/Vtop_foo.dot

You can then print a.ps. You may prefer gif format, which doesn’t get scaled so can
be more useful with large graphs.

For dynamic graph viewing consider ZGRViewer http://zvtm.sourceforge.net/zgrviewer.html.
If you know of better viewers let us know; ZGRViewer isn’t great for large graphs.

.tree output

Tree files are dumps of the AST Tree and are produced between every major algo-
rithmic stage. An example:

NETLIST 0x90fb00 <e1> {a0} w0
1: MODULE 0x912b20 <e8822> {a8} w0 top L2 [P]

*1:2: VAR 0x91a780 <e74#> {a22} w70 out_wide [O] WIRE
1:2:1: BASICDTYPE 0x91a3c0 <e73> {a22} w70 [logic]

8



Verilator 3.833 Internals Manual 7 DEBUGGING

"1:2:" indicates the hierarchy of the VAR is the op2p pointer under the MODULE, which
in turn is the op1p pointer under the NETLIST

"VAR" is the AstNodeType.

"0x91a780" is the address of this node.

"<e74>" means the 74th edit to the netlist was the last modification to this node. A
trailing # indicates this node changed since the last tree dump was made. You can
gdb break on this edit; see below.

"{a22}" indicates this node is related to line 22 in the source filename "a", where "a"
is the first file read, "z" the 36th, and "aa" the 37th.

"w70" indicates the width is 70 bits. sw70 would be signed 70 bits.

"out_wide" is the name of the node, in this case the name of the variable.

"[O]" are flags which vary with the type of node, in this case it means the variable is
an output.

Debugging with GDB

The test_regress/driver.pl script accepts –debug –gdb to start Verilator under gdb
and break when an error is hit or the program is about to exit. You can also use –
debug –gdbbt to just backtrace and then exit gdb. To debug the Verilated executable,
use –gdbsim.

If you wish to start verilator under GDB (or another debugger), then you can use
–debug and look at the underlying invocation of verilator_dgb. For example

t/t_alw_dly.pl --debug

shows it invokes the command:

../verilator_bin_dbg --prefix Vt_alw_dly --x-assign unique --debug
-cc -Mdir obj_dir/t_alw_dly --debug-check -f input.vc t/t_alw_dly.v

Start GDB, then start with the remaining arguments.

gdb ../verilator_bin_dbg
...
(gdb) start --prefix Vt_alw_dly --x-assign unique --debug -cc -Mdir

obj_dir/t_alw_dly --debug-check -f input.vc t/t_alw_dly.v
> obj_dir/t_alw_dly/vlt_compile.log

9



Verilator 3.833 Internals Manual 8 DISTRIBUTION

...
Temporary breakpoint 1, main (argc=13, argv=0xbfffefa4, env=0xbfffefdc)

at ../Verilator.cpp:615
615 ios::sync_with_stdio();
(gdb)

You can then continue execution with breakpoints as required.

To break at a specific edit number which changed a node (presumably to find what
made a <e####> line in the tree dumps):

watch AstNode::s_editCntGbl==####

To print a node:

call nodep->dumpGdb() # aliased to "pn" in src/.gdbinit
call nodep->dumpTreeGdb() # aliased to "pnt" in src/.gdbinit

When GDB halts, it is useful to understand that the backtrace will commonly show
the iterator functions between each invocation of visit in the backtrace. You will
typically see a frame sequence something like

...
visit()
iterateChildren()
iterateAndNext()
accept()
visit()
...

8 DISTRIBUTION

The latest version is available from http://www.veripool.org/.

Copyright 2008-2012 byWilson Snyder. Verilator is free software; you can redistribute
it and/or modify it under the terms of either the GNU Lesser General Public License
Version 3 or the Perl Artistic License Version 2.0.

10


	1 NAME
	2 INTRODUCTION
	3 ADDING A NEW FEATURE
	4 CODE FLOWS
	5 CODING CONVENTIONS
	6 TESTING
	7 DEBUGGING
	8 DISTRIBUTION

