![]() |
HepPDT Reference DocumentationHepPDT |
00001 // ---------------------------------------------------------------------- 00002 // 00003 // ParticleName.cc 00004 // Author: Lynn Garren and Walter Brown 00005 // 00006 // Create a map that gives a standard name for each pre-defined 00007 // particle ID number. Also create a map for the reverse lookup of 00008 // the ID number from a string. These maps are initialized if and only if 00009 // the public functions are called. Because the maps are static, 00010 // the initialization happens only once. 00011 // 00012 // The user NEVER calls ParticleNameInit() 00013 // We use a data table (struct Snames) so that compile time is not impacted. 00014 // 00015 // public functions: 00016 // PartcleIdMap const & getPartcleIdMap() 00017 // std::string ParticleName( const int pid ) 00018 // void listParticleNames( std::ostream & os ) 00019 // 00020 // ---------------------------------------------------------------------- 00021 00022 #include <string> 00023 #include <map> 00024 #include <iostream> 00025 #include <sstream> 00026 #include <iomanip> // width 00027 #include <utility> // make_pair 00028 00029 #include "HepPID/ParticleName.hh" 00030 #include "HepPID/ParticleIDMethods.hh" 00031 #include "HepPID/Version.hh" 00032 00033 namespace HepPID { 00034 00035 typedef std::map< int, std::string > PartcleIdMap; 00036 typedef std::map< std::string, int > ParticleLookupMap; 00037 00044 class ParticleNameMap{ 00045 00046 public: 00047 00048 typedef PartcleIdMap::const_iterator idIterator; 00049 typedef ParticleLookupMap::const_iterator nameIterator; 00050 00051 ParticleNameMap(PartcleIdMap m1,ParticleLookupMap m2) 00052 : itsNameMap(m1), itsLookupMap(m2) {} 00053 ~ParticleNameMap() {} 00054 00055 PartcleIdMap nameMap() const { return itsNameMap; } 00056 ParticleLookupMap lookupMap() const { return itsLookupMap; } 00057 idIterator begin() const { return itsNameMap.begin(); } 00058 idIterator end() const { return itsNameMap.end(); } 00059 idIterator find( const int & id) const { return itsNameMap.find(id); } 00060 nameIterator beginLookupMap() const { return itsLookupMap.begin(); } 00061 nameIterator endLookupMap() const { return itsLookupMap.end(); } 00062 nameIterator findString( const std::string & s) const { return itsLookupMap.find(s); } 00063 00064 private: 00065 00066 PartcleIdMap itsNameMap; 00067 ParticleLookupMap itsLookupMap; 00068 00069 // copies are not allowed 00070 ParticleNameMap( const ParticleNameMap & ); 00071 ParticleNameMap & operator = ( const ParticleNameMap & ); 00072 00073 }; 00074 00075 namespace { // ParticleNameInit and ParticleNameMap are private 00076 00077 ParticleNameMap const & ParticleNameInit() 00078 { 00079 00080 PartcleIdMap m; 00081 ParticleLookupMap nameMap; 00082 00083 static const struct { 00084 int pid; 00085 const char* pname; 00086 } SNames[] = { 00087 { 0, "" }, 00088 { 1, "d" }, 00089 { -1, "d~" }, 00090 { 2, "u" }, 00091 { -2, "u~" }, 00092 { 3, "s" }, 00093 { -3, "s~" }, 00094 { 4, "c" }, 00095 { -4, "c~" }, 00096 { 5, "b" }, 00097 { -5, "b~" }, 00098 { 6, "t" }, 00099 { -6, "t~" }, 00100 { 7, "b'" }, 00101 { -7, "b'~" }, 00102 { 8, "t'" }, 00103 { -8, "t'~" }, 00104 { 11, "e^-" }, 00105 { -11, "e^+" }, 00106 { 12, "nu_e" }, 00107 { -12, "nu_e~" }, 00108 { 13, "mu^-" }, 00109 { -13, "mu^+" }, 00110 { 14, "nu_mu" }, 00111 { -14, "nu_mu~" }, 00112 { 15, "tau^-" }, 00113 { -15, "tau^+" }, 00114 { 16, "nu_tau" }, 00115 { -16, "nu_tau~" }, 00116 { 17, "tau'^-" }, 00117 { -17, "tau'^+" }, 00118 { 18, "nu_tau'" }, 00119 { -18, "nu_tau'~" }, 00120 { 21, "g" }, 00121 { 22, "gamma" }, 00122 { 10022, "virtual-photon" }, 00123 { 20022, "Cerenkov-radiation" }, 00124 { 23, "Z^0" }, 00125 { 24, "W^+" }, 00126 { -24, "W^-" }, 00127 { 25, "H_1^0" }, 00128 { 32, "Z_2^0" }, 00129 { 33, "Z_3^0" }, 00130 { 34, "W_2^+" }, 00131 { -34, "W_2^-" }, 00132 { 35, "H_2^0" }, 00133 { 36, "H_3^0" }, 00134 { 37, "H^+" }, 00135 { -37, "H^-" }, 00136 { 39, "G" }, 00137 { 41, "R^0" }, 00138 { -41, "R~^0" }, 00139 { 42, "LQ_c" }, 00140 { -42, "LQ_c~" }, 00141 { 43, "Xu^0" }, 00142 { 44, "Xu^+" }, 00143 { -44, "Xu^-" }, 00144 { 51, "H_L^0" }, 00145 { 52, "H_1^++" }, 00146 { -52, "H_1^--" }, 00147 { 53, "H_2^+" }, 00148 { -53, "H_2^-" }, 00149 { 54, "H_2^++" }, 00150 { -54, "H_2^--" }, 00151 { 55, "H_4^0" }, 00152 { -55, "H_4~^0" }, 00153 { 81, "generator-specific+81" }, 00154 { 82, "generator-specific+82" }, 00155 { 83, "generator-specific+83" }, 00156 { 84, "generator-specific+84" }, 00157 { 85, "generator-specific+85" }, 00158 { 86, "generator-specific+86" }, 00159 { 87, "generator-specific+87" }, 00160 { 88, "generator-specific+88" }, 00161 { 89, "generator-specific+89" }, 00162 { 90, "generator-specific+90" }, 00163 { 91, "generator-specific+91" }, 00164 { 92, "generator-specific+92" }, 00165 { 93, "generator-specific+93" }, 00166 { 94, "generator-specific+94" }, 00167 { 95, "generator-specific+95" }, 00168 { 96, "generator-specific+96" }, 00169 { 97, "generator-specific+97" }, 00170 { 98, "generator-specific+98" }, 00171 { 99, "generator-specific+99" }, 00172 { -81, "generator-specific-81" }, 00173 { -82, "generator-specific-82" }, 00174 { -83, "generator-specific-83" }, 00175 { -84, "generator-specific-84" }, 00176 { -85, "generator-specific-85" }, 00177 { -86, "generator-specific-86" }, 00178 { -87, "generator-specific-87" }, 00179 { -88, "generator-specific-88" }, 00180 { -89, "generator-specific-89" }, 00181 { -90, "generator-specific-90" }, 00182 { -91, "generator-specific-91" }, 00183 { -92, "generator-specific-92" }, 00184 { -93, "generator-specific-93" }, 00185 { -94, "generator-specific-94" }, 00186 { -95, "generator-specific-95" }, 00187 { -96, "generator-specific-96" }, 00188 { -97, "generator-specific-97" }, 00189 { -98, "generator-specific-98" }, 00190 { -99, "generator-specific-99" }, 00191 { 100, "generator-specific+100" }, 00192 { -100, "generator-specific-100" }, 00193 { 101, "geantino" }, 00194 { 102, "charged-geantino" }, 00195 { 110, "reggeon" }, 00196 { 130, "K_L^0" }, 00197 { 310, "K_S^0" }, 00198 { 990, "pomeron" }, 00199 { 9990, "odderon" }, 00200 { 1000001, "susy-d_L" }, 00201 { -1000001, "susy-d_L~" }, 00202 { 1000002, "susy-u_L" }, 00203 { -1000002, "susy-u_L~" }, 00204 { 1000003, "susy-s_L" }, 00205 { -1000003, "susy-s_L~" }, 00206 { 1000004, "susy-c_L" }, 00207 { -1000004, "susy-c_L~" }, 00208 { 1000005, "susy-b_1" }, 00209 { -1000005, "susy-b_1~" }, 00210 { 1000006, "susy-t_1" }, 00211 { -1000006, "susy-t_1~" }, 00212 { 1000011, "susy-e_L^-" }, 00213 { -1000011, "susy-e_L^+" }, 00214 { 1000012, "susy-nu_eL" }, 00215 { -1000012, "susy-nu_eL~" }, 00216 { 1000013, "susy-mu_L^-" }, 00217 { -1000013, "susy-mu_L^+" }, 00218 { 1000014, "susy-nu_muL" }, 00219 { -1000014, "susy-nu_muL~" }, 00220 { 1000015, "susy-tau_L^-" }, 00221 { -1000015, "susy-tau_L^+" }, 00222 { 1000016, "susy-nu_tauL" }, 00223 { -1000016, "susy-nu_tauL~" }, 00224 { 1000021, "gluino" }, 00225 { 1000022, "susy-chi_1^0" }, 00226 { 1000023, "susy-chi_2^0" }, 00227 { 1000024, "susy-chi_1^+" }, 00228 { -1000024, "susy-chi_1^-" }, 00229 { 1000025, "susy-chi_3^0" }, 00230 { 1000035, "susy-chi_4^0" }, 00231 { 1000037, "susy-chi_2^+" }, 00232 { -1000037, "susy-chi_2^-" }, 00233 { 1000039, "gravitino" }, 00234 { 2000001, "susy-d_R" }, 00235 { -2000001, "susy-d_R~" }, 00236 { 2000002, "susy-u_R" }, 00237 { -2000002, "susy-u_R~" }, 00238 { 2000003, "susy-s_R" }, 00239 { -2000003, "susy-s_R~" }, 00240 { 2000004, "susy-c_R" }, 00241 { -2000004, "susy-c_R~" }, 00242 { 2000005, "susy-b_R" }, 00243 { -2000005, "susy-b_R~" }, 00244 { 2000006, "susy-t_R" }, 00245 { -2000006, "susy-t_R~" }, 00246 { 2000011, "susy-e_R^-" }, 00247 { -2000011, "susy-e_R^+" }, 00248 { 2000012, "susy-nu_eR" }, 00249 { -2000012, "susy-nu_eR~" }, 00250 { 2000013, "susy-mu_R^-" }, 00251 { -2000013, "susy-mu_R^+" }, 00252 { 2000014, "susy-nu_muR" }, 00253 { -2000014, "susy-nu_muR~" }, 00254 { 2000015, "susy-tau_R^-" }, 00255 { -2000015, "susy-tau_R^+" }, 00256 { 2000016, "susy-nu_tauR" }, 00257 { -2000016, "susy-nu_tauR~" }, 00258 { 3100021, "V8_tech" }, 00259 { -3100021, "V8_tech~" }, 00260 { 3000111, "pi_tech^0" }, 00261 { 3000115, "a_tech^0" }, 00262 { 3060111, "pi_tech_22_1" }, 00263 { 3160111, "pi_tech_22_8" }, 00264 { 3000113, "rho_tech^0" }, 00265 { 3130113, "rho_tech_11" }, 00266 { 3140113, "rho_tech_12" }, 00267 { 3150113, "rho_tech_21" }, 00268 { 3160113, "rho_tech_22" }, 00269 { 3000211, "pi_tech^+" }, 00270 { -3000211, "pi_tech^-" }, 00271 { 3000213, "rho_tech^+" }, 00272 { -3000213, "rho_tech^-" }, 00273 { 3000215, "a_tech^+" }, 00274 { -3000215, "a_tech^-" }, 00275 { 3000221, "pi'_tech" }, 00276 { 3100221, "eta_tech" }, 00277 { 3000223, "omega_tech" }, 00278 { 4000001, "d*" }, 00279 { -4000001, "d*~" }, 00280 { 4000002, "u*" }, 00281 { -4000002, "u*~" }, 00282 { 4000011, "e*^-" }, 00283 { -4000011, "e*^+" }, 00284 { 4000012, "nu*_e" }, 00285 { -4000012, "nu*_e~" }, 00286 { 4000039, "G*" }, 00287 { -4000039, "G*~" }, 00288 { 5000040, "black_hole" }, 00289 { 5100001, "d_L^(1)" }, 00290 { -5100001, "d~_L^(1)" }, 00291 { 5100002, "u_L^(1)" }, 00292 { -5100002, "u~_L^(1)" }, 00293 { 5100003, "s_L^(1)" }, 00294 { -5100003, "s~_L^(1)" }, 00295 { 5100004, "c_L^(1)" }, 00296 { -5100004, "c~_L^(1)" }, 00297 { 5100005, "b_L^(1)" }, 00298 { -5100005, "b~_L^(1)" }, 00299 { 5100006, "t_L^(1)" }, 00300 { -5100006, "t~_L^(1)" }, 00301 { 5100011, "e_L^(1)-" }, 00302 { -5100011, "e_L^(1)+" }, 00303 { 5100012, "nu_eL^(1)" }, 00304 { -5100012, "nu_eL~^(1)" }, 00305 { 5100013, "mu_L^(1)-" }, 00306 { -5100013, "mu_L^(1)+" }, 00307 { 5100014, "nu_muL^(1)" }, 00308 { -5100014, "nu_muL~^(1)" }, 00309 { 5100015, "tau_L^(1)-" }, 00310 { -5100015, "tau_L^(1)+" }, 00311 { 5100016, "nu_tauL^(1)" }, 00312 { -5100016, "nu_tauL~^(1)" }, 00313 { 6100001, "d_R^(1)" }, 00314 { -6100001, "d~_R^(1)" }, 00315 { 6100002, "u_R^(1)" }, 00316 { -6100002, "u~_R^(1)" }, 00317 { 6100003, "s_R^(1)" }, 00318 { -6100003, "s~_R^(1)" }, 00319 { 6100004, "c_R^(1)" }, 00320 { -6100004, "c~_R^(1)" }, 00321 { 6100005, "b_R^(1)" }, 00322 { -6100005, "b~_R^(1)" }, 00323 { 6100006, "t_R^(1)" }, 00324 { -6100006, "t~_R^(1)" }, 00325 { 6100011, "e_R^(1)-" }, 00326 { -6100011, "e_R^(1)+" }, 00327 { 6100012, "nu_eR^(1)" }, 00328 { -6100012, "nu_eR~^(1)" }, 00329 { 6100013, "mu_R^(1)-" }, 00330 { -6100013, "mu_R^(1)+" }, 00331 { 6100014, "nu_muR^(1)" }, 00332 { -6100014, "nu_muR~^(1)" }, 00333 { 6100015, "tau_R^(1)-" }, 00334 { -6100015, "tau_R^(1)+" }, 00335 { 6100016, "nu_tauR^(1)" }, 00336 { -6100016, "nu_tauR~^(1)" }, 00337 { 5100021, "g^(1)" }, 00338 { 5100022, "gamma^(1)" }, 00339 { 5100023, "Z^(1)0" }, 00340 { 5100024, "W^(1)+" }, 00341 { -5100024, "W^(1)-" }, 00342 { 5100025, "h^(1)0" }, 00343 { 5100039, "G^(1)" }, 00344 { 9900012, "nu_Re" }, 00345 { -9900012, "nu_Re~" }, 00346 { 9900014, "nu_Rmu" }, 00347 { -9900014, "nu_Rmu~" }, 00348 { 9900016, "nu_Rtau" }, 00349 { -9900016, "nu_Rtau~" }, 00350 { 9900023, "Z_R^0" }, 00351 { -9900023, "Z_R~^0" }, 00352 { 9900024, "W_R^+" }, 00353 { -9900024, "W_R^-" }, 00354 { 9900041, "H_L^++" }, 00355 { -9900041, "H_L^--" }, 00356 { 9900042, "H_R^++" }, 00357 { -9900042, "H_R^--" }, 00358 { 9910113, "rho_diffr^0" }, 00359 { 9910211, "pi_diffr^+" }, 00360 { -9910211, "pi_diffr^-" }, 00361 { 9910223, "omega_diffr" }, 00362 { 9910333, "phi_diffr" }, 00363 { 9910443, "psi_diffr" }, 00364 { 9912112, "n_diffr^0" }, 00365 { -9912112, "n_diffr~^0" }, 00366 { 9912212, "p_diffr^+" }, 00367 { -9912212, "p_diffr~^-" }, 00368 { 9920022, "remnant photon" }, 00369 { 9922212, "remnant nucleon" }, 00370 { -9922212, "remnant nucleon~" }, 00371 { 9900441, "cc~[1S08]" }, 00372 { 9910441, "cc~[3P08]" }, 00373 { 9900443, "cc~[3S18]" }, 00374 { 9900551, "bb~[1S08]" }, 00375 { 9910551, "bb~[3P08]" }, 00376 { 9900553, "bb~[3S18]" }, 00377 { 1103, "dd_1" }, 00378 { -1103, "dd_1~" }, 00379 { 2101, "ud_0" }, 00380 { -2101, "ud_0~" }, 00381 { 2103, "ud_1" }, 00382 { -2103, "ud_1~" }, 00383 { 2203, "uu_1" }, 00384 { -2203, "uu_1~" }, 00385 { 3101, "sd_0" }, 00386 { -3101, "sd_0~" }, 00387 { 3103, "sd_1" }, 00388 { -3103, "sd_1~" }, 00389 { 3201, "su_0" }, 00390 { -3201, "su_0~" }, 00391 { 3203, "su_1" }, 00392 { -3203, "su_1~" }, 00393 { 3303, "ss_1" }, 00394 { -3303, "ss_1~" }, 00395 { 4101, "cd_0" }, 00396 { -4101, "cd_0~" }, 00397 { 4103, "cd_1" }, 00398 { -4103, "cd_1~" }, 00399 { 4201, "cu_0" }, 00400 { -4201, "cu_0~" }, 00401 { 4203, "cu_1" }, 00402 { -4203, "cu_1~" }, 00403 { 4301, "cs_0" }, 00404 { -4301, "cs_0~" }, 00405 { 4303, "cs_1" }, 00406 { -4303, "cs_1~" }, 00407 { 4403, "cc_1" }, 00408 { -4403, "cc_1~" }, 00409 { 5101, "bd_0" }, 00410 { -5101, "bd_0~" }, 00411 { 5103, "bd_1" }, 00412 { -5103, "bd_1~" }, 00413 { 5201, "bu_0" }, 00414 { -5201, "bu_0~" }, 00415 { 5203, "bu_1" }, 00416 { -5203, "bu_1~" }, 00417 { 5301, "bs_0" }, 00418 { -5301, "bs_0~" }, 00419 { 5303, "bs_1" }, 00420 { -5303, "bs_1~" }, 00421 { 5401, "bc_0" }, 00422 { -5401, "bc_0~" }, 00423 { 5403, "bc_1" }, 00424 { -5403, "bc_1~" }, 00425 { 5503, "bb_1" }, 00426 { -5503, "bb_1~" }, 00427 { 6101, "td_0" }, 00428 { -6101, "td_0~" }, 00429 { 6103, "td_1" }, 00430 { -6103, "td_1~" }, 00431 { 6201, "tu_0" }, 00432 { -6201, "tu_0~" }, 00433 { 6203, "tu_1" }, 00434 { -6203, "tu_1~" }, 00435 { 6301, "ts_0" }, 00436 { -6301, "ts_0~" }, 00437 { 6303, "ts_1" }, 00438 { -6303, "ts_1~" }, 00439 { 6401, "tc_0" }, 00440 { -6401, "tc_0~" }, 00441 { 6403, "tc_1" }, 00442 { -6403, "tc_1~" }, 00443 { 6501, "tb_0" }, 00444 { -6501, "tb_0~" }, 00445 { 6503, "tb_1" }, 00446 { -6503, "tb_1~" }, 00447 { 6603, "tt_1" }, 00448 { -6603, "tt_1~" }, 00449 { 7101, "b'd_0" }, 00450 { -7101, "b'd_0~" }, 00451 { 7103, "b'd_1" }, 00452 { -7103, "b'd_1~" }, 00453 { 7201, "b'u_0" }, 00454 { -7201, "b'u_0~" }, 00455 { 7203, "b'u_1" }, 00456 { -7203, "b'u_1~" }, 00457 { 7301, "b's_0" }, 00458 { -7301, "b's_0~" }, 00459 { 7303, "b's_1" }, 00460 { -7303, "b's_1~" }, 00461 { 7401, "b'c_0" }, 00462 { -7401, "b'c_0~" }, 00463 { 7403, "b'c_1" }, 00464 { -7403, "b'c_1~" }, 00465 { 7501, "b'b_0" }, 00466 { -7501, "b'b_0~" }, 00467 { 7503, "b'b_1" }, 00468 { -7503, "b'b_1~" }, 00469 { 7601, "b't_0" }, 00470 { -7601, "b't_0~" }, 00471 { 7603, "b't_1" }, 00472 { -7603, "b't_1~" }, 00473 { 7703, "b'b'_1" }, 00474 { -7703, "b'b'_1~" }, 00475 { 8101, "t'd_0" }, 00476 { -8101, "t'd_0~" }, 00477 { 8103, "t'd_1" }, 00478 { -8103, "t'd_1~" }, 00479 { 8201, "t'u_0" }, 00480 { -8201, "t'u_0~" }, 00481 { 8203, "t'u_1" }, 00482 { -8203, "t'u_1~" }, 00483 { 8301, "t's_0" }, 00484 { -8301, "t's_0~" }, 00485 { 8303, "t's_1" }, 00486 { -8303, "t's_1~" }, 00487 { 8401, "t'c_0" }, 00488 { -8401, "t'c_0~" }, 00489 { 8403, "t'c_1" }, 00490 { -8403, "t'c_1~" }, 00491 { 8501, "t'b_0" }, 00492 { -8501, "t'b_0~" }, 00493 { 8503, "t'b_1" }, 00494 { -8503, "t'b_1~" }, 00495 { 8601, "t't_0" }, 00496 { -8601, "t't_0~" }, 00497 { 8603, "t't_1" }, 00498 { -8603, "t't_1~" }, 00499 { 8701, "t'b'_0" }, 00500 { -8701, "t'b'_0~" }, 00501 { 8703, "t'b'_1" }, 00502 { -8703, "t'b'_1~" }, 00503 { 8803, "t't'_1" }, 00504 { -8803, "t't'_1~" }, 00505 { 111, "pi^0" }, 00506 { 9000111, "a_0(980)^0" }, 00507 { 10111, "a_0(1450)^0" }, 00508 { 100111, "pi(1300)^0" }, 00509 { 9010111, "pi(1800)^0" }, 00510 { 113, "rho(770)^0" }, 00511 { 10113, "b_1(1235)^0" }, 00512 { 20113, "a_1(1260)^0" }, 00513 { 9000113, "pi_1(1400)^0" }, 00514 { 100113, "rho(1450)^0" }, 00515 { 9010113, "pi_1(1600)^0" }, 00516 { 9020113, "a_1(1640)^0" }, 00517 { 30113, "rho(1700)^0" }, 00518 { 9030113, "rho(1900)^0" }, 00519 { 9040113, "rho(2150)^0" }, 00520 { 115, "a_2(1320)^0" }, 00521 { 10115, "pi_2(1670)^0" }, 00522 { 9000115, "a_2(1700)^0" }, 00523 { 9010115, "pi_2(2100)^0" }, 00524 { 117, "rho_3(1690)^0" }, 00525 { 9000117, "rho_3(1990)^0" }, 00526 { 9010117, "rho_3(2250)^0" }, 00527 { 119, "a_4(2040)^0" }, 00528 { 211, "pi^+" }, 00529 { -211, "pi^-" }, 00530 { 9000211, "a_0(980)^+" }, 00531 { -9000211, "a_0(980)^-" }, 00532 { 10211, "a_0(1450)^+" }, 00533 { -10211, "a_0(1450)^-" }, 00534 { 100211, "pi(1300)^+" }, 00535 { -100211, "pi(1300)^-" }, 00536 { 9010211, "pi(1800)^+" }, 00537 { -9010211, "pi(1800)^-" }, 00538 { 213, "rho(770)^+" }, 00539 { -213, "rho(770)^-" }, 00540 { 10213, "b_1(1235)^+" }, 00541 { -10213, "b_1(1235)^-" }, 00542 { 20213, "a_1(1260)^+" }, 00543 { -20213, "a_1(1260)^-" }, 00544 { 9000213, "pi_1(1400)^+" }, 00545 { -9000213, "pi_1(1400)^-" }, 00546 { 100213, "rho(1450)^+" }, 00547 { -100213, "rho(1450)^-" }, 00548 { 9010213, "pi_1(1600)^+" }, 00549 { -9010213, "pi_1(1600)^-" }, 00550 { 9020213, "a_1(1640)^+" }, 00551 { -9020213, "a_1(1640)^-" }, 00552 { 30213, "rho(1700)^+" }, 00553 { -30213, "rho(1700)^-" }, 00554 { 9030213, "rho(1900)^+" }, 00555 { -9030213, "rho(1900)^-" }, 00556 { 9040213, "rho(2150)^+" }, 00557 { -9040213, "rho(2150)^-" }, 00558 { 215, "a_2(1320)^+" }, 00559 { -215, "a_2(1320)^-" }, 00560 { 10215, "pi_2(1670)^+" }, 00561 { -10215, "pi_2(1670)^-" }, 00562 { 9000215, "a_2(1700)^+" }, 00563 { -9000215, "a_2(1700)^-" }, 00564 { 9010215, "pi_2(2100)^+" }, 00565 { -9010215, "pi_2(2100)^-" }, 00566 { 217, "rho_3(1690)^+" }, 00567 { -217, "rho_3(1690)^-" }, 00568 { 9000217, "rho_3(1990)^+" }, 00569 { -9000217, "rho_3(1990)^-" }, 00570 { 9010217, "rho_3(2250)^+" }, 00571 { -9010217, "rho_3(2250)^-" }, 00572 { 219, "a_4(2040)^+" }, 00573 { -219, "a_4(2040)^-" }, 00574 { 221, "eta" }, 00575 { 9000221, "f_0(600)" }, 00576 { 10221, "f_0(1370)" }, 00577 { 9010221, "f_0(980)" }, 00578 { 9020221, "eta(1405)" }, 00579 { 9030221, "f_0(1500)" }, 00580 { 9040221, "eta(1760)" }, 00581 { 9050221, "f_0(2020)" }, 00582 { 9060221, "f_0(2100)" }, 00583 { 9070221, "f_0(2200)" }, 00584 { 9080221, "eta(2225)" }, 00585 { 9090221, "sigma_0" }, 00586 { 100221, "eta(1295)" }, 00587 { 331, "eta'(958)" }, 00588 { 10331, "f_0(1710)" }, 00589 { 100331, "eta(1475)" }, 00590 { 223, "omega(782)" }, 00591 { 9000223, "f_1(1510)" }, 00592 { 9010223, "h_1(1595)" }, 00593 { 10223, "h_1(1170)" }, 00594 { 20223, "f_1(1285)" }, 00595 { 30223, "omega(1650)" }, 00596 { 100223, "omega(1420)" }, 00597 { 333, "phi(1020)" }, 00598 { 10333, "h_1(1380)" }, 00599 { 20333, "f_1(1420)" }, 00600 { 100333, "phi(1680)" }, 00601 { 225, "f_2(1270)" }, 00602 { 9000225, "f_2(1430)" }, 00603 { 10225, "eta_2(1645)" }, 00604 { 9010225, "f_2(1565)" }, 00605 { 9020225, "f_2(1640)" }, 00606 { 9030225, "f_2(1810)" }, 00607 { 9040225, "f_2(1910)" }, 00608 { 9050225, "f_2(1950)" }, 00609 { 9060225, "f_2(2010)" }, 00610 { 9070225, "f_2(2150)" }, 00611 { 9080225, "f_2(2300)" }, 00612 { 9090225, "f_2(2340)" }, 00613 { 335, "f'_2(1525)" }, 00614 { 10335, "eta_2(1870)" }, 00615 { 227, "omega_3(1670)" }, 00616 { 337, "phi_3(1850)" }, 00617 { 229, "f_4(2050)" }, 00618 { 9000229, "f_J(2220)" }, 00619 { 9010229, "f_4(2300)" }, 00620 { 311, "K^0" }, 00621 { -311, "K~^0" }, 00622 { 9000311, "K*_0(800)^0" }, 00623 { -9000311, "K*_0(800)~^0" }, 00624 { 10311, "K*_0(1430)^0" }, 00625 { -10311, "K*_0(1430)~^0" }, 00626 { 100311, "K(1460)^0" }, 00627 { -100311, "K(1460)~^0" }, 00628 { 9010311, "K(1830)^0" }, 00629 { -9010311, "K(1830)~^0" }, 00630 { 9020311, "K*_0(1950)^0" }, 00631 { -9020311, "K*_0(1950)~^0" }, 00632 { 321, "K^+" }, 00633 { -321, "K^-" }, 00634 { 9000321, "K*_0(800)^+" }, 00635 { -9000321, "K*_0(800)^-" }, 00636 { 10321, "K*_0(1430)^+" }, 00637 { -10321, "K*_0(1430)^-" }, 00638 { 100321, "K(1460)^+" }, 00639 { -100321, "K(1460)^-" }, 00640 { 9010321, "K(1830)^+" }, 00641 { -9010321, "K(1830)^-" }, 00642 { 9020321, "K*_0(1950)^+" }, 00643 { -9020321, "K*_0(1950)^-" }, 00644 { 313, "K*(892)^0" }, 00645 { -313, "K*(892)~^0" }, 00646 { 10313, "K_1(1270)^0" }, 00647 { -10313, "K_1(1270)~^0" }, 00648 { 20313, "K_1(1400)^0" }, 00649 { -20313, "K_1(1400)~^0" }, 00650 { 30313, "K*(1680)^0" }, 00651 { -30313, "K*(1680)~^0" }, 00652 { 100313, "K*(1410)^0" }, 00653 { -100313, "K*(1410)~^0" }, 00654 { 9000313, "K_1(1650)^0" }, 00655 { -9000313, "K_1(1650)~^0" }, 00656 { 323, "K*(892)^+" }, 00657 { -323, "K*(892)^-" }, 00658 { 10323, "K_1(1270)^+" }, 00659 { -10323, "K_1(1270)^-" }, 00660 { 20323, "K_1(1400)^+" }, 00661 { -20323, "K_1(1400)^-" }, 00662 { 30323, "K*(1680)^+" }, 00663 { -30323, "K*(1680)^-" }, 00664 { 100323, "K*(1410)^+" }, 00665 { -100323, "K*(1410)^-" }, 00666 { 9000323, "K_1(1650)^+" }, 00667 { -9000323, "K_1(1650)^-" }, 00668 { 315, "K*_2(1430)^0" }, 00669 { -315, "K*_2(1430)~^0" }, 00670 { 9000315, "K_2(1580)^0" }, 00671 { -9000315, "K_2(1580)~^0" }, 00672 { 10315, "K_2(1770)^0" }, 00673 { -10315, "K_2(1770)~^0" }, 00674 { 9010315, "K*_2(1980)^0" }, 00675 { -9010315, "K*_2(1980)~^0" }, 00676 { 9020315, "K_2(2250)^0" }, 00677 { -9020315, "K_2(2250)~^0" }, 00678 { 20315, "K_2(1820)^0" }, 00679 { -20315, "K_2(1820)~^0" }, 00680 { 325, "K*_2(1430)^+" }, 00681 { -325, "K*_2(1430)^-" }, 00682 { 9000325, "K_2(1580)^+" }, 00683 { -9000325, "K_2(1580)^-" }, 00684 { 10325, "K_2(1770)^+" }, 00685 { -10325, "K_2(1770)^-" }, 00686 { 9010325, "K*_2(1980)^+" }, 00687 { -9010325, "K*_2(1980)^-" }, 00688 { 9020325, "K_2(2250)^+" }, 00689 { -9020325, "K_2(2250)^-" }, 00690 { 20325, "K_2(1820)^+" }, 00691 { -20325, "K_2(1820)^-" }, 00692 { 100325, "K_2(1980)^+" }, 00693 { -100325, "K_2(1980)^-" }, 00694 { 317, "K*_3(1780)^0" }, 00695 { -317, "K*_3(1780)~^0" }, 00696 { 9010317, "K_3(2320)^0" }, 00697 { -9010317, "K_3(2320)~^0" }, 00698 { 327, "K*_3(1780)^+" }, 00699 { -327, "K*_3(1780)^-" }, 00700 { 9010327, "K_3(2320)^+" }, 00701 { -9010327, "K_3(2320)^-" }, 00702 { 319, "K*_4(2045)^0" }, 00703 { -319, "K*_4(2045)~^0" }, 00704 { 9000319, "K_4(2500)^0" }, 00705 { -9000319, "K_4(2500)~^0" }, 00706 { 329, "K*_4(2045)^+" }, 00707 { -329, "K*_4(2045)^-" }, 00708 { 9000329, "K_4(2500)^+" }, 00709 { -9000329, "K_4(2500)^-" }, 00710 { 411, "D^+" }, 00711 { -411, "D^-" }, 00712 { 10411, "D*_0(2400)^+" }, 00713 { -10411, "D*_0(2400)^-" }, 00714 { 100411, "D(2S)^+" }, 00715 { -100411, "D(2S)^-" }, 00716 { 413, "D*(2010)^+" }, 00717 { -413, "D*(2010)^-" }, 00718 { 10413, "D_1(2420)^+" }, 00719 { -10413, "D_1(2420)^-" }, 00720 { 20413, "D_1(H)^+" }, 00721 { -20413, "D_1(H)^-" }, 00722 { 100413, "D*(2S)^+" }, 00723 { -100413, "D*(2S)^-" }, 00724 { 415, "D*_2(2460)^+" }, 00725 { -415, "D*_2(2460)^-" }, 00726 { 421, "D^0" }, 00727 { -421, "D~^0" }, 00728 { 10421, "D*_0(2400)^0" }, 00729 { -10421, "D*_0(2400)~^0" }, 00730 { 100421, "D(2S)^0" }, 00731 { -100421, "D(2S)~^0" }, 00732 { 423, "D*(2007)^0" }, 00733 { -423, "D*(2007)~^0" }, 00734 { 10423, "D_1(2420)^0" }, 00735 { -10423, "D_1(2420)~^0" }, 00736 { 20423, "D_1(2430)^0" }, 00737 { -20423, "D_1(2430)~^0" }, 00738 { 100423, "D*(2S)^0" }, 00739 { -100423, "D*(2S)~^0" }, 00740 { 425, "D*_2(2460)^0" }, 00741 { -425, "D*_2(2460)~^0" }, 00742 { 431, "D_s^+" }, 00743 { -431, "D_s^-" }, 00744 { 10431, "D*_s0(2317)^+" }, 00745 { -10431, "D*_s0(2317)^-" }, 00746 { 433, "D*_s^+" }, 00747 { -433, "D*_s^-" }, 00748 { 10433, "D_s1(2536)^+" }, 00749 { -10433, "D_s1(2536)^-" }, 00750 { 20433, "D_s1(2460)^+" }, 00751 { -20433, "D_s1(2460)^-" }, 00752 { 435, "D*_s2(2573)^+" }, 00753 { -435, "D*_s2(2573)^-" }, 00754 { 441, "eta_c(1S)" }, 00755 { 10441, "chi_c0(1P)" }, 00756 { 100441, "eta_c(2S)" }, 00757 { 443, "J/psi(1S)" }, 00758 { 9000443, "psi(4040)" }, 00759 { 10443, "hc(1P)" }, 00760 { 9010443, "psi(4160)" }, 00761 { 20443, "chi_c1(1P)" }, 00762 { 9020443, "psi(4415)" }, 00763 { 30443, "psi(3770)" }, 00764 { 100443, "psi(2S)" }, 00765 { 445, "chi_c2(1P)" }, 00766 { 100445, "chi_c2(2P)" }, 00767 { 511, "B^0" }, 00768 { -511, "B~^0" }, 00769 { 10511, "B*_0^0" }, 00770 { -10511, "B*_0~^0" }, 00771 { 513, "B*^0" }, 00772 { -513, "B*~^0" }, 00773 { 10513, "B_1(L)^0" }, 00774 { -10513, "B_1(L)~^0" }, 00775 { 20513, "B_1(H)^0" }, 00776 { -20513, "B_1(H)~^0" }, 00777 { 515, "B*_2^0" }, 00778 { -515, "B*_2~^0" }, 00779 { 521, "B^+" }, 00780 { -521, "B^-" }, 00781 { 10521, "B*_0^+" }, 00782 { -10521, "B*_0^-" }, 00783 { 523, "B*^+" }, 00784 { -523, "B*^-" }, 00785 { 10523, "B_1(L)^+" }, 00786 { -10523, "B_1(L)^-" }, 00787 { 20523, "B_1(H)^+" }, 00788 { -20523, "B_1(H)^-" }, 00789 { 525, "B*_2^+" }, 00790 { -525, "B*_2^-" }, 00791 { 531, "B_s^0" }, 00792 { -531, "B_s~^0" }, 00793 { 10531, "B*_s0^0" }, 00794 { -10531, "B*_s0~^0" }, 00795 { 533, "B*_s^0" }, 00796 { -533, "B*_s~^0" }, 00797 { 10533, "B_s1(L)^0" }, 00798 { -10533, "B_s1(L)~^0" }, 00799 { 20533, "B_s1(H)^0" }, 00800 { -20533, "B_s1(H)~^0" }, 00801 { 535, "B*_s2^0" }, 00802 { -535, "B*_s2~^0" }, 00803 { 541, "B_c^+" }, 00804 { -541, "B_c^-" }, 00805 { 10541, "B*_c0^+" }, 00806 { -10541, "B*_c0^-" }, 00807 { 543, "B*_c^+" }, 00808 { -543, "B*_c^-" }, 00809 { 10543, "B_c1(L)^+" }, 00810 { -10543, "B_c1(L)^-" }, 00811 { 20543, "B_c1(H)^+" }, 00812 { -20543, "B_c1(H)^-" }, 00813 { 545, "B*_c2^+" }, 00814 { -545, "B*_c2^-" }, 00815 { 551, "eta_b(1S)" }, 00816 { 10551, "chi_b0(1P)" }, 00817 { 100551, "eta_b(2S)" }, 00818 { 110551, "chi_b0(2P)" }, 00819 { 200551, "eta_b(3S)" }, 00820 { 210551, "chi_b0(3P)" }, 00821 { 553, "Upsilon(1S)" }, 00822 { 9000553, "Upsilon(10860)" }, 00823 { 10553, "h_b(1P)" }, 00824 { 9010553, "Upsilon(11020)" }, 00825 { 20553, "chi_b1(1P)" }, 00826 { 9020553, "Upsilon(7S)" }, 00827 { 30553, "Upsilon_1(1D)" }, 00828 { 100553, "Upsilon(2S)" }, 00829 { 110553, "h_b(2P)" }, 00830 { 120553, "chi_b1(2P)" }, 00831 { 130553, "Upsilon_1(2D)" }, 00832 { 200553, "Upsilon(3S)" }, 00833 { 210553, "h_b(3P)" }, 00834 { 220553, "chi_b1(3P)" }, 00835 { 300553, "Upsilon(4S)" }, 00836 { 555, "chi_b2(1P)" }, 00837 { 10555, "eta_b2(1D)" }, 00838 { 20555, "Upsilon_2(1D)" }, 00839 { 100555, "chi_b2(2P)" }, 00840 { 110555, "eta_b2(2D)" }, 00841 { 120555, "Upsilon_2(2D)" }, 00842 { 200555, "chi_b2(3P)" }, 00843 { 557, "Upsilon_3(1D)" }, 00844 { 100557, "Upsilon_3(2D)" }, 00845 { 611, "T^+" }, 00846 { -611, "T^-" }, 00847 { 613, "T*^+" }, 00848 { -613, "T*^-" }, 00849 { 621, "T^0" }, 00850 { -621, "T~^0" }, 00851 { 623, "T*^0" }, 00852 { -623, "T*~^0" }, 00853 { 631, "T_s^+" }, 00854 { -631, "T_s^-" }, 00855 { 633, "T*_s^+" }, 00856 { -633, "T*_s^-" }, 00857 { 641, "T_c^0" }, 00858 { -641, "T_c~^0" }, 00859 { 643, "T*_c^0" }, 00860 { -643, "T*_c~^0" }, 00861 { 651, "T_b^+" }, 00862 { -651, "T_b^-" }, 00863 { 653, "T*_b^+" }, 00864 { -653, "T*_b^-" }, 00865 { 661, "eta_t" }, 00866 { 663, "theta" }, 00867 { 711, "L^0" }, 00868 { -711, "L~^0" }, 00869 { 713, "L*^0" }, 00870 { -713, "L*~^0" }, 00871 { 721, "L^-" }, 00872 { -721, "L^+" }, 00873 { 723, "L*^-" }, 00874 { -723, "L*^+" }, 00875 { 731, "L_s^0" }, 00876 { -731, "L_s~^0" }, 00877 { 733, "L*_s^0" }, 00878 { -733, "L*_s~^0" }, 00879 { 741, "L_c^-" }, 00880 { -741, "L_c^+" }, 00881 { 743, "L*_c^-" }, 00882 { -743, "L*_c^+" }, 00883 { 751, "L_b^0" }, 00884 { -751, "L_b~^0" }, 00885 { 753, "L*_b^0" }, 00886 { -753, "L*_b~^0" }, 00887 { 761, "L_t^-" }, 00888 { -761, "L_t^+" }, 00889 { 763, "L*_t^-" }, 00890 { -763, "L*_t^+" }, 00891 { 771, "eta_l" }, 00892 { 773, "theta_l" }, 00893 { 811, "X^+" }, 00894 { -811, "X^-" }, 00895 { 813, "X*^+" }, 00896 { -813, "X*^-" }, 00897 { 821, "X^0" }, 00898 { -821, "X~^0" }, 00899 { 823, "X*^0" }, 00900 { -823, "X*~^0" }, 00901 { 831, "X_s^+" }, 00902 { -831, "X_s^-" }, 00903 { 833, "X*_s^+" }, 00904 { -833, "X*_s^-" }, 00905 { 841, "X_c^0" }, 00906 { -841, "X_c~^0" }, 00907 { 843, "X*_c^0" }, 00908 { -843, "X*_c~^0" }, 00909 { 851, "X_b^+" }, 00910 { -851, "X_b^-" }, 00911 { 853, "X*_b^+" }, 00912 { -853, "X*_b^-" }, 00913 { 861, "X_t^0" }, 00914 { -861, "X_t~^0" }, 00915 { 863, "X*_t^0" }, 00916 { -863, "X*_t~^0" }, 00917 { 871, "X_l^+" }, 00918 { -871, "X_l^-" }, 00919 { 873, "X*_l^+" }, 00920 { -873, "X*_l^-" }, 00921 { 881, "eta_h" }, 00922 { 883, "theta_H" }, 00923 { 30343, "Xsd" }, 00924 { -30343, "anti-Xsd" }, 00925 { 30353, "Xsu" }, 00926 { -30353, "anti-Xsu" }, 00927 { 30363, "Xss" }, 00928 { -30363, "anti-Xss" }, 00929 { 30373, "Xdd" }, 00930 { -30373, "anti-Xdd" }, 00931 { 30383, "Xdu" }, 00932 { -30383, "anti-Xdu" }, 00933 { 2112, "n^0" }, 00934 { -2112, "n~^0" }, 00935 { 2212, "p^+" }, 00936 { -2212, "p~^-" }, 00937 { 12212, "N(1440)^+"}, 00938 { 12112, "N(1440)^0"}, 00939 { 22212, "N(1535)^+"}, 00940 { 22112, "N(1535)^0"}, 00941 { 32212, "N(1650)^+"}, 00942 { 32112, "N(1650)^0"}, 00943 { 42212, "N(1710)^+"}, 00944 { 42112, "N(1710)^0"}, 00945 { 1214, "N(1520)^0"}, 00946 { 2124, "N(1520)^+"}, 00947 { 21214, "N(1700)^0"}, 00948 { 22124, "N(1700)^+"}, 00949 { 31214, "N(1720)^0"}, 00950 { 32124, "N(1720)^+"}, 00951 { 2116, "N(1675)^0"}, 00952 { 2216, "N(1675)^+"}, 00953 { 12116, "N(1680)^0"}, 00954 { 12216, "N(1680)^+"}, 00955 { 1218, "N(2190)^0"}, 00956 { 2128, "N(2190)^+" }, 00957 { 1114, "Delta^-" }, 00958 { -1114, "Delta~^+" }, 00959 { 2114, "Delta^0" }, 00960 { -2114, "Delta~^0" }, 00961 { 2214, "Delta^+" }, 00962 { -2214, "Delta~^-" }, 00963 { 2224, "Delta^++" }, 00964 { -2224, "Delta~^--" }, 00965 { 31114, "Delta(1600)^-" }, 00966 { 32114, "Delta(1600)^0" }, 00967 { 32214, "Delta(1600)^+" }, 00968 { 32224, "Delta(1600)^++" }, 00969 { 1112, "Delta(1620)^-" }, 00970 { 1212, "Delta(1620)^0" }, 00971 { 2122, "Delta(1620)^+" }, 00972 { 2222, "Delta(1620)^++" }, 00973 { 11114, "Delta(1700)^-" }, 00974 { 12114, "Delta(1700)^0" }, 00975 { 12214, "Delta(1700)^+" }, 00976 { 12224, "Delta(1700)^++" }, 00977 { 1116, "Delta(1905)^-" }, 00978 { 1216, "Delta(1905)^0" }, 00979 { 2126, "Delta(1905)^+" }, 00980 { 2226, "Delta(1905)^++" }, 00981 { 21112, "Delta(1910)^-" }, 00982 { 21212, "Delta(1910)^0" }, 00983 { 22122, "Delta(1910)^+" }, 00984 { 22222, "Delta(1910)^++" }, 00985 { 21114, "Delta(1920)^-" }, 00986 { 22114, "Delta(1920)^0" }, 00987 { 22214, "Delta(1920)^+" }, 00988 { 22224, "Delta(1920)^++" }, 00989 { 11116, "Delta(1930)^-" }, 00990 { 11216, "Delta(1930)^0" }, 00991 { 12126, "Delta(1930)^+" }, 00992 { 12226, "Delta(1930)^++" }, 00993 { 1118, "Delta(1950)^-" }, 00994 { 2118, "Delta(1950)^0" }, 00995 { 2218, "Delta(1950)^+" }, 00996 { 2228, "Delta(1950)^++" }, 00997 { 3122, "Lambda^0" }, 00998 { -3122, "Lambda~^0" }, 00999 { 13122, "Lambda(1405)^0" }, 01000 { -13122, "Lambda~(1405)^0" }, 01001 { 23122, "Lambda(1600)^0" }, 01002 { -23122, "Lambda~(1600)^0" }, 01003 { 33122, "Lambda(1670)^0" }, 01004 { -33122, "Lambda~(1670)^0" }, 01005 { 43122, "Lambda(1800)^0" }, 01006 { -43122, "Lambda~(1800)^0" }, 01007 { 53122, "Lambda(1810)^0" }, 01008 { -53122, "Lambda~(1810)^0" }, 01009 { 3124, "Lambda(1520)^0" }, 01010 { -3124, "Lambda~(1520)^0" }, 01011 { 13124, "Lambda(1690)^0" }, 01012 { -13124, "Lambda~(1690)^0" }, 01013 { 23124, "Lambda(1890)^0" }, 01014 { -23124, "Lambda~(1890)^0" }, 01015 { 3126, "Lambda(1820)^0" }, 01016 { -3126, "Lambda~(1820)^0" }, 01017 { 13126, "Lambda(1830)^0" }, 01018 { -13126, "Lambda~(1830)^0" }, 01019 { 23126, "Lambda(2110)^0" }, 01020 { -23126, "Lambda~(2110)^0" }, 01021 { 3128, "Lambda(2100)^0" }, 01022 { -3128, "Lambda~(2100)^0" }, 01023 { 3112, "Sigma^-" }, 01024 { -3112, "Sigma~^+" }, 01025 { 3212, "Sigma^0" }, 01026 { -3212, "Sigma~^0" }, 01027 { 3222, "Sigma^+" }, 01028 { -3222, "Sigma~^-" }, 01029 { 13222, "Sigma(1660)^+" }, 01030 { -13222, "Sigma~(1660)^+" }, 01031 { 13212, "Sigma(1660)^0" }, 01032 { -13212, "Sigma~(1660)^0" }, 01033 { 13112, "Sigma(1660)^-" }, 01034 { -13112, "Sigma~(1660)^-" }, 01035 { 23112, "Sigma(1750)^-" }, 01036 { -23112, "Sigma~(1750)^-" }, 01037 { 23212, "Sigma(1750)^0" }, 01038 { -23212, "Sigma~(1750)^0" }, 01039 { 23222, "Sigma(1750)^+" }, 01040 { -23222, "Sigma~(1750)^+" }, 01041 { 3114, "Sigma*^-" }, 01042 { -3114, "Sigma*~^+" }, 01043 { 3214, "Sigma*^0" }, 01044 { -3214, "Sigma*~^0" }, 01045 { 3224, "Sigma*^+" }, 01046 { -3224, "Sigma*~^-" }, 01047 { 13224, "Sigma(1670)^+" }, 01048 { -13224, "Sigma~(1670)^+" }, 01049 { 13214, "Sigma(1670)^0" }, 01050 { -13214, "Sigma~(1670)^0" }, 01051 { 13114, "Sigma(1670)^-" }, 01052 { -13114, "Sigma~(1670)^-" }, 01053 { 23224, "Sigma(1940)^+" }, 01054 { -23224, "Sigma~(1940)^+" }, 01055 { 23214, "Sigma(1940)^0" }, 01056 { -23214, "Sigma~(1940)^0" }, 01057 { 23114, "Sigma(1940)^-" }, 01058 { -23114, "Sigma~(1940)^-" }, 01059 { 3226, "Sigma(1775)^+" }, 01060 { -3226, "Sigma~(1775)^+" }, 01061 { 3216, "Sigma(1775)^0" }, 01062 { -3216, "Sigma~(1775)^0" }, 01063 { 3116, "Sigma(1775)^-" }, 01064 { -3116, "Sigma~(1775)^-" }, 01065 { 13226, "Sigma(1915)^+" }, 01066 { -13226, "Sigma~(1915)^+" }, 01067 { 13216, "Sigma(1915)^0" }, 01068 { -13216, "Sigma~(1915)^0" }, 01069 { 13116, "Sigma(1915)^-" }, 01070 { -13116, "Sigma~(1915)^-" }, 01071 { 3228, "Sigma(2030)^+" }, 01072 { -3228, "Sigma~(2030)^+" }, 01073 { 3218, "Sigma(2030)^0" }, 01074 { -3218, "Sigma~(2030)^0" }, 01075 { 3118, "Sigma(2030)^-" }, 01076 { -3118, "Sigma~(2030)^-" }, 01077 { 3312, "Xi^-" }, 01078 { -3312, "Xi~^+" }, 01079 { 3322, "Xi^0" }, 01080 { -3322, "Xi~^0" }, 01081 { 3314, "Xi*^-" }, 01082 { -3314, "Xi*~^+" }, 01083 { 3324, "Xi*^0" }, 01084 { -3324, "Xi*~^0" }, 01085 { 13314, "Xi(1820)^-" }, 01086 { -13314, "Xi(1820)~^+" }, 01087 { 13324, "Xi(1820)^0" }, 01088 { -13324, "Xi(1820)~^0" }, 01089 { 3334, "Omega^-" }, 01090 { -3334, "Omega~^+" }, 01091 { 4112, "Sigma_c^0" }, 01092 { -4112, "Sigma_c~^0" }, 01093 { 4114, "Sigma*_c^0" }, 01094 { -4114, "Sigma*_c~^0" }, 01095 { 4122, "Lambda_c^+" }, 01096 { -4122, "Lambda_c~^-" }, 01097 { 14122, "Lambda_c(2593)^+" }, 01098 { -14122, "Lambda_c~(2593)^-" }, 01099 { 14124, "Lambda_c(2625)^+" }, 01100 { -14124, "Lambda_c~(2625)^-" }, 01101 { 4132, "Xi_c^0" }, 01102 { -4132, "Xi_c~^0" }, 01103 { 4212, "Sigma_c^+" }, 01104 { -4212, "Sigma_c~^-" }, 01105 { 4214, "Sigma*_c^+" }, 01106 { -4214, "Sigma*_c~^-" }, 01107 { 4222, "Sigma_c^++" }, 01108 { -4222, "Sigma_c~^--" }, 01109 { 4224, "Sigma*_c^++" }, 01110 { -4224, "Sigma*_c~^--" }, 01111 { 4232, "Xi_c^+" }, 01112 { -4232, "Xi_c~^-" }, 01113 { 4312, "Xi'_c^0" }, 01114 { -4312, "Xi'_c~^0" }, 01115 { 4314, "Xi*_c^0" }, 01116 { -4314, "Xi*_c~^0" }, 01117 { 4322, "Xi'_c^+" }, 01118 { -4322, "Xi'_c~^-" }, 01119 { 4324, "Xi*_c^+" }, 01120 { -4324, "Xi*_c~^-" }, 01121 { 4332, "Omega_c^0" }, 01122 { -4332, "Omega_c~^0" }, 01123 { 4334, "Omega*_c^0" }, 01124 { -4334, "Omega*_c~^0" }, 01125 { 4412, "Xi_cc^+" }, 01126 { -4412, "Xi_cc~^-" }, 01127 { 4414, "Xi*_cc^+" }, 01128 { -4414, "Xi*_cc~^-" }, 01129 { 4422, "Xi_cc^++" }, 01130 { -4422, "Xi_cc~^--" }, 01131 { 4424, "Xi*_cc^++" }, 01132 { -4424, "Xi*_cc~^--" }, 01133 { 4432, "Omega_cc^+" }, 01134 { -4432, "Omega_cc~^-" }, 01135 { 4434, "Omega*_cc^+" }, 01136 { -4434, "Omega*_cc~^-" }, 01137 { 4444, "Omega*_ccc^++" }, 01138 { -4444, "Omega*_ccc~^--" }, 01139 { 5112, "Sigma_b^-" }, 01140 { -5112, "Sigma_b~^+" }, 01141 { 5114, "Sigma*_b^-" }, 01142 { -5114, "Sigma*_b~^+" }, 01143 { 5122, "Lambda_b^0" }, 01144 { -5122, "Lambda_b~^0" }, 01145 { 5132, "Xi_b^-" }, 01146 { -5132, "Xi_b~^+" }, 01147 { 5142, "Xi_bc^0" }, 01148 { -5142, "Xi_bc~^0" }, 01149 { 5212, "Sigma_b^0" }, 01150 { -5212, "Sigma_b~^0" }, 01151 { 5214, "Sigma*_b^0" }, 01152 { -5214, "Sigma*_b~^0" }, 01153 { 5222, "Sigma_b^+" }, 01154 { -5222, "Sigma_b~^-" }, 01155 { 5224, "Sigma*_b^+" }, 01156 { -5224, "Sigma*_b~^-" }, 01157 { 5232, "Xi_b^0" }, 01158 { -5232, "Xi_b~^0" }, 01159 { 5242, "Xi_bc^+" }, 01160 { -5242, "Xi_bc~^-" }, 01161 { 5312, "Xi'_b^-" }, 01162 { -5312, "Xi'_b~^+" }, 01163 { 5314, "Xi*_b^-" }, 01164 { -5314, "Xi*_b~^+" }, 01165 { 5322, "Xi'_b^0" }, 01166 { -5322, "Xi'_b~^0" }, 01167 { 5324, "Xi*_b^0" }, 01168 { -5324, "Xi*_b~^0" }, 01169 { 5332, "Omega_b^-" }, 01170 { -5332, "Omega_b~^+" }, 01171 { 5334, "Omega*_b^-" }, 01172 { -5334, "Omega*_b~^+" }, 01173 { 5342, "Omega_bc^0" }, 01174 { -5342, "Omega_bc~^0" }, 01175 { 5412, "Xi'_bc^0" }, 01176 { -5412, "Xi'_bc~^0" }, 01177 { 5414, "Xi*_bc^0" }, 01178 { -5414, "Xi*_bc~^0" }, 01179 { 5422, "Xi'_bc^+" }, 01180 { -5422, "Xi'_bc~^-" }, 01181 { 5424, "Xi*_bc^+" }, 01182 { -5424, "Xi*_bc~^-" }, 01183 { 5432, "Omega'_bc^0" }, 01184 { -5432, "Omega'_bc~^0" }, 01185 { 5434, "Omega*_bc^0" }, 01186 { -5434, "Omega*_bc~^0" }, 01187 { 5442, "Omega_bcc^+" }, 01188 { -5442, "Omega_bcc~^-" }, 01189 { 5444, "Omega*_bcc^+" }, 01190 { -5444, "Omega*_bcc~^-" }, 01191 { 5512, "Xi_bb^-" }, 01192 { -5512, "Xi_bb~^+" }, 01193 { 5514, "Xi*_bb^-" }, 01194 { -5514, "Xi*_bb~^+" }, 01195 { 5522, "Xi_bb^0" }, 01196 { -5522, "Xi_bb~^0" }, 01197 { 5524, "Xi*_bb^0" }, 01198 { -5524, "Xi*_bb~^0" }, 01199 { 5532, "Omega_bb^-" }, 01200 { -5532, "Omega_bb~^+" }, 01201 { 5534, "Omega*_bb^-" }, 01202 { -5534, "Omega*_bb~^+" }, 01203 { 5542, "Omega_bbc^0" }, 01204 { -5542, "Omega_bbc~^0" }, 01205 { 5544, "Omega*_bbc^0" }, 01206 { -5544, "Omega*_bbc~^0" }, 01207 { 5554, "Omega*_bbb^-" }, 01208 { -5554, "Omega*_bbb~^+" }, 01209 { 6112, "Sigma_t^0" }, 01210 { -6112, "Sigma_t~^0" }, 01211 { 6114, "Sigma*_t^0" }, 01212 { -6114, "Sigma*_t~^0" }, 01213 { 6122, "Lambda_t^+" }, 01214 { -6122, "Lambda_t~^-" }, 01215 { 6132, "Xi_t^0" }, 01216 { -6132, "Xi_t~^0" }, 01217 { 6142, "Xi_tc^+" }, 01218 { -6142, "Xi_tc~^-" }, 01219 { 6152, "Xi_tb^0" }, 01220 { -6152, "Xi_tb~^0" }, 01221 { 6212, "Sigma_t^+" }, 01222 { -6212, "Sigma_t~^-" }, 01223 { 6214, "Sigma*_t^+" }, 01224 { -6214, "Sigma*_t~^-" }, 01225 { 6222, "Sigma_t^++" }, 01226 { -6222, "Sigma_t~^--" }, 01227 { 6224, "Sigma*_t^++" }, 01228 { -6224, "Sigma*_t~^--" }, 01229 { 6232, "Xi_t^+" }, 01230 { -6232, "Xi_t~^-" }, 01231 { 6242, "Xi_tc^++" }, 01232 { -6242, "Xi_tc~^--" }, 01233 { 6252, "Xi_tb^+" }, 01234 { -6252, "Xi_tb~^-" }, 01235 { 6312, "Xi'_t^0" }, 01236 { -6312, "Xi'_t~^0" }, 01237 { 6314, "Xi*_t^0" }, 01238 { -6314, "Xi*_t~^0" }, 01239 { 6322, "Xi'_t^+" }, 01240 { -6322, "Xi'_t~^-" }, 01241 { 6324, "Xi*_t^+" }, 01242 { -6324, "Xi*_t~^-" }, 01243 { 6332, "Omega_t^0" }, 01244 { -6332, "Omega_t~^0" }, 01245 { 6334, "Omega*_t^0" }, 01246 { -6334, "Omega*_t~^0" }, 01247 { 6342, "Omega_tc^+" }, 01248 { -6342, "Omega_tc~^-" }, 01249 { 6352, "Omega_tb^0" }, 01250 { -6352, "Omega_tb~^0" }, 01251 { 6412, "Xi'_tc^+" }, 01252 { -6412, "Xi'_tc~^-" }, 01253 { 6414, "Xi*_tc^+" }, 01254 { -6414, "Xi*_tc~^-" }, 01255 { 6422, "Xi'_tc^++" }, 01256 { -6422, "Xi'_tc~^--" }, 01257 { 6424, "Xi*_tc^++" }, 01258 { -6424, "Xi*_tc~^--" }, 01259 { 6432, "Omega'_tc^+" }, 01260 { -6432, "Omega'_tc~^-" }, 01261 { 6434, "Omega*_tc^+" }, 01262 { -6434, "Omega*_tc~^-" }, 01263 { 6442, "Omega_tcc^++" }, 01264 { -6442, "Omega_tcc~^--" }, 01265 { 6444, "Omega*_tcc^++" }, 01266 { -6444, "Omega*_tcc~^--" }, 01267 { 6452, "Omega_tbc^+" }, 01268 { -6452, "Omega_tbc~^-" }, 01269 { 6512, "Xi'_tb^0" }, 01270 { -6512, "Xi'_tb~^0" }, 01271 { 6514, "Xi*_tb^0" }, 01272 { -6514, "Xi*_tb~^0" }, 01273 { 6522, "Xi'_tb^+" }, 01274 { -6522, "Xi'_tb~^-" }, 01275 { 6524, "Xi*_tb^+" }, 01276 { -6524, "Xi*_tb~^-" }, 01277 { 6532, "Omega'_tb^0" }, 01278 { -6532, "Omega'_tb~^0" }, 01279 { 6534, "Omega*_tb^0" }, 01280 { -6534, "Omega*_tb~^0" }, 01281 { 6542, "Omega'_tbc^+" }, 01282 { -6542, "Omega'_tbc~^-" }, 01283 { 6544, "Omega*_tbc^+" }, 01284 { -6544, "Omega*_tbc~^-" }, 01285 { 6552, "Omega_tbb^0" }, 01286 { -6552, "Omega_tbb~^0" }, 01287 { 6554, "Omega*_tbb^0" }, 01288 { -6554, "Omega*_tbb~^0" }, 01289 { 6612, "Xi_tt^+" }, 01290 { -6612, "Xi_tt~^-" }, 01291 { 6614, "Xi*_tt^+" }, 01292 { -6614, "Xi*_tt~^-" }, 01293 { 6622, "Xi_tt^++" }, 01294 { -6622, "Xi_tt~^--" }, 01295 { 6624, "Xi*_tt^++" }, 01296 { -6624, "Xi*_tt~^--" }, 01297 { 6632, "Omega_tt^+" }, 01298 { -6632, "Omega_tt~^-" }, 01299 { 6634, "Omega*_tt^+" }, 01300 { -6634, "Omega*_tt~^-" }, 01301 { 6642, "Omega_ttc^++" }, 01302 { -6642, "Omega_ttc~^--" }, 01303 { 6644, "Omega*_ttc^++" }, 01304 { -6644, "Omega*_ttc~^--" }, 01305 { 6652, "Omega_ttb^+" }, 01306 { -6652, "Omega_ttb~^-" }, 01307 { 6654, "Omega*_ttb^+" }, 01308 { -6654, "Omega*_ttb~^-" }, 01309 { 6664, "Omega*_ttt^++" }, 01310 { -6664, "Omega*_ttt~^--" }, 01311 { 7112, "Sigma_b'^-" }, 01312 { -7112, "Sigma_b'~^+" }, 01313 { 7114, "Sigma*_b'^-" }, 01314 { -7114, "Sigma*_b'~^+" }, 01315 { 7122, "Lambda_b'^0" }, 01316 { -7122, "Lambda_b'~^0" }, 01317 { 7132, "Xi_b'^-" }, 01318 { -7132, "Xi_b'~^+" }, 01319 { 7142, "Xi_b'c^0" }, 01320 { -7142, "Xi_b'c~^0" }, 01321 { 7152, "Xi_b'b^-" }, 01322 { -7152, "Xi_b'b~^+" }, 01323 { 7162, "Xi_b't^0" }, 01324 { -7162, "Xi_b't~^0" }, 01325 { 7212, "Sigma_b'^0" }, 01326 { -7212, "Sigma_b'~^0" }, 01327 { 7214, "Sigma*_b'^0" }, 01328 { -7214, "Sigma*_b'~^0" }, 01329 { 7222, "Sigma_b'^+" }, 01330 { -7222, "Sigma_b'~^-" }, 01331 { 7224, "Sigma*_b'^+" }, 01332 { -7224, "Sigma*_b'~^-" }, 01333 { 7232, "Xi_b'^0" }, 01334 { -7232, "Xi_b'~^0" }, 01335 { 7242, "Xi_b'c^+" }, 01336 { -7242, "Xi_b'c~^-" }, 01337 { 7252, "Xi_b'b^0" }, 01338 { -7252, "Xi_b'b~^0" }, 01339 { 7262, "Xi_b't^+" }, 01340 { -7262, "Xi_b't~^-" }, 01341 { 7312, "Xi'_b'^-" }, 01342 { -7312, "Xi'_b'~^+" }, 01343 { 7314, "Xi*_b'^-" }, 01344 { -7314, "Xi*_b'~^+" }, 01345 { 7322, "Xi'_b'^0" }, 01346 { -7322, "Xi'_b'~^0" }, 01347 { 7324, "Xi*_b'^0" }, 01348 { -7324, "Xi*_b'~^0" }, 01349 { 7332, "Omega'_b'^-" }, 01350 { -7332, "Omega'_b'~^+" }, 01351 { 7334, "Omega*_b'^-" }, 01352 { -7334, "Omega*_b'~^+" }, 01353 { 7342, "Omega_b'c^0" }, 01354 { -7342, "Omega_b'c~^0" }, 01355 { 7352, "Omega_b'b^-" }, 01356 { -7352, "Omega_b'b~^+" }, 01357 { 7362, "Omega_b't^0" }, 01358 { -7362, "Omega_b't~^0" }, 01359 { 7412, "Xi'_b'c^0" }, 01360 { -7412, "Xi'_b'c~^0" }, 01361 { 7414, "Xi*_b'c^0" }, 01362 { -7414, "Xi*_b'c~^0" }, 01363 { 7422, "Xi'_b'c^+" }, 01364 { -7422, "Xi'_b'c~^-" }, 01365 { 7424, "Xi*_b'c^+" }, 01366 { -7424, "Xi*_b'c~^-" }, 01367 { 7432, "Omega'_b'c^0" }, 01368 { -7432, "Omega'_b'c~^0" }, 01369 { 7434, "Omega*_b'c^0" }, 01370 { -7434, "Omega*_b'c~^0" }, 01371 { 7442, "Omega'_b'cc^+" }, 01372 { -7442, "Omega'_b'cc~^-" }, 01373 { 7444, "Omega*_b'cc^+" }, 01374 { -7444, "Omega*_b'cc~^-" }, 01375 { 7452, "Omega_b'bc^0" }, 01376 { -7452, "Omega_b'bc~^0" }, 01377 { 7462, "Omega_b'tc^+" }, 01378 { -7462, "Omega_b'tc~^-" }, 01379 { 7512, "Xi'_b'b^-" }, 01380 { -7512, "Xi'_b'b~^+" }, 01381 { 7514, "Xi*_b'b^-" }, 01382 { -7514, "Xi*_b'b~^+" }, 01383 { 7522, "Xi'_b'b^0" }, 01384 { -7522, "Xi'_b'b~^0" }, 01385 { 7524, "Xi*_b'b^0" }, 01386 { -7524, "Xi*_b'b~^0" }, 01387 { 7532, "Omega'_b'b^-" }, 01388 { -7532, "Omega'_b'b~^+" }, 01389 { 7534, "Omega*_b'b^-" }, 01390 { -7534, "Omega*_b'b~^+" }, 01391 { 7542, "Omega'_b'bc^0" }, 01392 { -7542, "Omega'_b'bc~^0" }, 01393 { 7544, "Omega*_b'bc^0" }, 01394 { -7544, "Omega*_b'bc~^0" }, 01395 { 7552, "Omega'_b'bb^-" }, 01396 { -7552, "Omega'_b'bb~^+" }, 01397 { 7554, "Omega*_b'bb^-" }, 01398 { -7554, "Omega*_b'bb~^+" }, 01399 { 7562, "Omega_b'tb^0" }, 01400 { -7562, "Omega_b'tb~^0" }, 01401 { 7612, "Xi'_b't^0" }, 01402 { -7612, "Xi'_b't~^0" }, 01403 { 7614, "Xi*_b't^0" }, 01404 { -7614, "Xi*_b't~^0" }, 01405 { 7622, "Xi'_b't^+" }, 01406 { -7622, "Xi'_b't~^-" }, 01407 { 7624, "Xi*_b't^+" }, 01408 { -7624, "Xi*_b't~^-" }, 01409 { 7632, "Omega'_b't^0" }, 01410 { -7632, "Omega'_b't~^0" }, 01411 { 7634, "Omega*_b't^0" }, 01412 { -7634, "Omega*_b't~^0" }, 01413 { 7642, "Omega'_b'tc^+" }, 01414 { -7642, "Omega'_b'tc~^-" }, 01415 { 7644, "Omega*_b'tc^+" }, 01416 { -7644, "Omega*_b'tc~^-" }, 01417 { 7652, "Omega'_b'tb^0" }, 01418 { -7652, "Omega'_b'tb~^0" }, 01419 { 7654, "Omega*_b'tb^0" }, 01420 { -7654, "Omega*_b'tb~^0" }, 01421 { 7662, "Omega'_b'tt^+" }, 01422 { -7662, "Omega'_b'tt~^-" }, 01423 { 7664, "Omega*_b'tt^+" }, 01424 { -7664, "Omega*_b'tt~^-" }, 01425 { 7712, "Xi'_b'b'^-" }, 01426 { -7712, "Xi'_b'b'~^+" }, 01427 { 7714, "Xi*_b'b'^-" }, 01428 { -7714, "Xi*_b'b'~^+" }, 01429 { 7722, "Xi'_b'b'^0" }, 01430 { -7722, "Xi'_b'b'~^0" }, 01431 { 7724, "Xi*_b'b'^0" }, 01432 { -7724, "Xi*_b'b'~^0" }, 01433 { 7732, "Omega'_b'b'^-" }, 01434 { -7732, "Omega'_b'b'~^+" }, 01435 { 7734, "Omega*_b'b'^-" }, 01436 { -7734, "Omega*_b'b'~^+" }, 01437 { 7742, "Omega'_b'b'c^0" }, 01438 { -7742, "Omega'_b'b'c~^0" }, 01439 { 7744, "Omega*_b'b'c^0" }, 01440 { -7744, "Omega*_b'b'c~^0" }, 01441 { 7752, "Omega'_b'b'b^-" }, 01442 { -7752, "Omega'_b'b'b~^+" }, 01443 { 7754, "Omega*_b'b'b^-" }, 01444 { -7754, "Omega*_b'b'b~^+" }, 01445 { 7762, "Omega'_b'b't^0" }, 01446 { -7762, "Omega'_b'b't~^0" }, 01447 { 7764, "Omega*_b'b't^0" }, 01448 { -7764, "Omega*_b'b't~^0" }, 01449 { 7774, "Omega*_b'b'b'^-" }, 01450 { -7774, "Omega*_b'b'b'~^+" }, 01451 { 8112, "Sigma_t'^0" }, 01452 { -8112, "Sigma_t'~^0" }, 01453 { 8114, "Sigma*_t'^0" }, 01454 { -8114, "Sigma*_t'~^0" }, 01455 { 8122, "Lambda_t'^+" }, 01456 { -8122, "Lambda_t'~^-" }, 01457 { 8132, "Xi_t'^0" }, 01458 { -8132, "Xi_t'~^0" }, 01459 { 8142, "Xi_t'c^+" }, 01460 { -8142, "Xi_t'c~^-" }, 01461 { 8152, "Xi_t'b^0" }, 01462 { -8152, "Xi_t'b~^0" }, 01463 { 8162, "Xi_t't^+" }, 01464 { -8162, "Xi_t't~^-" }, 01465 { 8172, "Xi_t'b'^0" }, 01466 { -8172, "Xi_t'b'~^0" }, 01467 { 8212, "Sigma_t'^+" }, 01468 { -8212, "Sigma_t'~^-" }, 01469 { 8214, "Sigma*_t'^+" }, 01470 { -8214, "Sigma*_t'~^-" }, 01471 { 8222, "Sigma_t'^++" }, 01472 { -8222, "Sigma_t'~^--" }, 01473 { 8224, "Sigma*_t'^++" }, 01474 { -8224, "Sigma*_t'~^--" }, 01475 { 8232, "Xi_t'^+" }, 01476 { -8232, "Xi_t'~^-" }, 01477 { 8242, "Xi_t'c^++" }, 01478 { -8242, "Xi_t'c~^--" }, 01479 { 8252, "Xi_t'b^+" }, 01480 { -8252, "Xi_t'b~^-" }, 01481 { 8262, "Xi_t't^++" }, 01482 { -8262, "Xi_t't~^--" }, 01483 { 8272, "Xi_t'b'^+" }, 01484 { -8272, "Xi_t'b'~^-" }, 01485 { 8312, "Xi'_t'^0" }, 01486 { -8312, "Xi'_t'~^0" }, 01487 { 8314, "Xi*_t'^0" }, 01488 { -8314, "Xi*_t'~^0" }, 01489 { 8322, "Xi'_t'^+" }, 01490 { -8322, "Xi'_t'~^-" }, 01491 { 8324, "Xi*_t'^+" }, 01492 { -8324, "Xi*_t'~^-" }, 01493 { 8332, "Omega'_t'^0" }, 01494 { -8332, "Omega'_t'~^0" }, 01495 { 8334, "Omega*_t'^0" }, 01496 { -8334, "Omega*_t'~^0" }, 01497 { 8342, "Omega_t'c^+" }, 01498 { -8342, "Omega_t'c~^-" }, 01499 { 8352, "Omega_t'b^0" }, 01500 { -8352, "Omega_t'b~^0" }, 01501 { 8362, "Omega_t't^+" }, 01502 { -8362, "Omega_t't~^-" }, 01503 { 8372, "Omega_t'b'^0" }, 01504 { -8372, "Omega_t'b'~^0" }, 01505 { 8412, "Xi'_t'c^+" }, 01506 { -8412, "Xi'_t'c~^-" }, 01507 { 8414, "Xi*_t'c^+" }, 01508 { -8414, "Xi*_t'c~^-" }, 01509 { 8422, "Xi'_t'c^++" }, 01510 { -8422, "Xi'_t'c~^--" }, 01511 { 8424, "Xi*_t'c^++" }, 01512 { -8424, "Xi*_t'c~^--" }, 01513 { 8432, "Omega'_t'c^+" }, 01514 { -8432, "Omega'_t'c~^-" }, 01515 { 8434, "Omega*_t'c^+" }, 01516 { -8434, "Omega*_t'c~^-" }, 01517 { 8442, "Omega'_t'cc^++" }, 01518 { -8442, "Omega'_t'cc~^--" }, 01519 { 8444, "Omega*_t'cc^++" }, 01520 { -8444, "Omega*_t'cc~^--" }, 01521 { 8452, "Omega_t'bc^+" }, 01522 { -8452, "Omega_t'bc~^-" }, 01523 { 8462, "Omega_t'tc^++" }, 01524 { -8462, "Omega_t'tc~^--" }, 01525 { 8472, "Omega_t'b'c ^+" }, 01526 { -8472, "Omega_t'b'c ~^-" }, 01527 { 8512, "Xi'_t'b^0" }, 01528 { -8512, "Xi'_t'b~^0" }, 01529 { 8514, "Xi*_t'b^0" }, 01530 { -8514, "Xi*_t'b~^0" }, 01531 { 8522, "Xi'_t'b^+" }, 01532 { -8522, "Xi'_t'b~^-" }, 01533 { 8524, "Xi*_t'b^+" }, 01534 { -8524, "Xi*_t'b~^-" }, 01535 { 8532, "Omega'_t'b^0" }, 01536 { -8532, "Omega'_t'b~^0" }, 01537 { 8534, "Omega*_t'b^0" }, 01538 { -8534, "Omega*_t'b~^0" }, 01539 { 8542, "Omega'_t'bc^+" }, 01540 { -8542, "Omega'_t'bc~^-" }, 01541 { 8544, "Omega*_t'bc^+" }, 01542 { -8544, "Omega*_t'bc~^-" }, 01543 { 8552, "Omega'_t'bb^0" }, 01544 { -8552, "Omega'_t'bb~^0" }, 01545 { 8554, "Omega*_t'bb^0" }, 01546 { -8554, "Omega*_t'bb~^0" }, 01547 { 8562, "Omega_t'tb^+" }, 01548 { -8562, "Omega_t'tb~^-" }, 01549 { 8572, "Omega_t'b'b ^0" }, 01550 { -8572, "Omega_t'b'b ~^0" }, 01551 { 8612, "Xi'_t't^+" }, 01552 { -8612, "Xi'_t't~^-" }, 01553 { 8614, "Xi*_t't^+" }, 01554 { -8614, "Xi*_t't~^-" }, 01555 { 8622, "Xi'_t't^++" }, 01556 { -8622, "Xi'_t't~^--" }, 01557 { 8624, "Xi*_t't^++" }, 01558 { -8624, "Xi*_t't~^--" }, 01559 { 8632, "Omega'_t't^+" }, 01560 { -8632, "Omega'_t't~^-" }, 01561 { 8634, "Omega*_t't^+" }, 01562 { -8634, "Omega*_t't~^-" }, 01563 { 8642, "Omega'_t'tc^++" }, 01564 { -8642, "Omega'_t'tc~^--" }, 01565 { 8644, "Omega*_t'tc^++" }, 01566 { -8644, "Omega*_t'tc~^--" }, 01567 { 8652, "Omega'_t'tb^+" }, 01568 { -8652, "Omega'_t'tb~^-" }, 01569 { 8654, "Omega*_t'tb^+" }, 01570 { -8654, "Omega*_t'tb~^-" }, 01571 { 8662, "Omega'_t'tt^++" }, 01572 { -8662, "Omega'_t'tt~^--" }, 01573 { 8664, "Omega*_t'tt^++" }, 01574 { -8664, "Omega*_t'tt~^--" }, 01575 { 8672, "Omega_t'b't ^+" }, 01576 { -8672, "Omega_t'b't ~^-" }, 01577 { 8712, "Xi'_t'b'^0" }, 01578 { -8712, "Xi'_t'b'~^0" }, 01579 { 8714, "Xi*_t'b'^0" }, 01580 { -8714, "Xi*_t'b'~^0" }, 01581 { 8722, "Xi'_t'b'^+" }, 01582 { -8722, "Xi'_t'b'~^-" }, 01583 { 8724, "Xi*_t'b'^+" }, 01584 { -8724, "Xi*_t'b'~^-" }, 01585 { 8732, "Omega'_t'b'^0" }, 01586 { -8732, "Omega'_t'b'~^0" }, 01587 { 8734, "Omega*_t'b'^0" }, 01588 { -8734, "Omega*_t'b'~^0" }, 01589 { 8742, "Omega'_t'b'c^+" }, 01590 { -8742, "Omega'_t'b'c~^-" }, 01591 { 8744, "Omega*_t'b'c^+" }, 01592 { -8744, "Omega*_t'b'c~^-" }, 01593 { 8752, "Omega'_t'b'b^0" }, 01594 { -8752, "Omega'_t'b'b~^0" }, 01595 { 8754, "Omega*_t'b'b^0" }, 01596 { -8754, "Omega*_t'b'b~^0" }, 01597 { 8762, "Omega'_t'b't^+" }, 01598 { -8762, "Omega'_t'b't~^-" }, 01599 { 8764, "Omega*_t'b't^+" }, 01600 { -8764, "Omega*_t'b't~^-" }, 01601 { 8772, "Omega'_t'b'b'^0" }, 01602 { -8772, "Omega'_t'b'b'~^0" }, 01603 { 8774, "Omega*_t'b'b'^0" }, 01604 { -8774, "Omega*_t'b'b'~^0" }, 01605 { 8812, "Xi'_t't'^+" }, 01606 { -8812, "Xi'_t't'~^-" }, 01607 { 8814, "Xi*_t't'^+" }, 01608 { -8814, "Xi*_t't'~^-" }, 01609 { 8822, "Xi'_t't'^++" }, 01610 { -8822, "Xi'_t't'~^--" }, 01611 { 8824, "Xi*_t't'^++" }, 01612 { -8824, "Xi*_t't'~^--" }, 01613 { 8832, "Omega'_t't'^+" }, 01614 { -8832, "Omega'_t't'~^-" }, 01615 { 8834, "Omega*_t't'^+" }, 01616 { -8834, "Omega*_t't'~^-" }, 01617 { 8842, "Omega'_t't'c^++" }, 01618 { -8842, "Omega'_t't'c~^--" }, 01619 { 8844, "Omega*_t't'c^++" }, 01620 { -8844, "Omega*_t't'c~^--" }, 01621 { 8852, "Omega'_t't'b^+" }, 01622 { -8852, "Omega'_t't'b~^-" }, 01623 { 8854, "Omega*_t't'b^+" }, 01624 { -8854, "Omega*_t't'b~^-" }, 01625 { 8862, "Omega'_t't't^++" }, 01626 { -8862, "Omega'_t't't~^--" }, 01627 { 8864, "Omega*_t't't^++" }, 01628 { -8864, "Omega*_t't't~^--" }, 01629 { 8872, "Omega'_t't'b'^+" }, 01630 { -8872, "Omega'_t't'b'~^-" }, 01631 { 8874, "Omega*_t't'b'^+" }, 01632 { -8874, "Omega*_t't'b'~^-" }, 01633 { 8884, "Omega*_t't't'^++" }, 01634 { -8884, "Omega*_t't't'~^--" }, 01635 { 9221132, "Theta^+" }, 01636 { 9331122, "Phi^--" }, 01637 { 1000993, "R_~gg^0" }, 01638 { 1009113, "R_~gd~d^0" }, 01639 { 1009213, "R_~gu~d^+" }, 01640 { 1009223, "R_~gu~u^0" }, 01641 { 1009313, "R_~gd~s^0" }, 01642 { 1009323, "R_~gu~s^+" }, 01643 { 1009333, "R_~gs~s^0" }, 01644 { 1091114, "R_~gddd^-" }, 01645 { 1092114, "R_~gudd^0" }, 01646 { 1092214, "R_~guud^+" }, 01647 { 1092224, "R_~guuu^++" }, 01648 { 1093114, "R_~gsdd^-" }, 01649 { 1093214, "R_~gsud^0" }, 01650 { 1093224, "R_~gsuu^+" }, 01651 { 1093314, "R_~gssd^-" }, 01652 { 1093324, "R_~gssu^0" }, 01653 { 1093334, "R_~gsss^-" }, 01654 { 1000612, "R_~t_1~d^+" }, 01655 { 1000622, "R_~t_1~u^0" }, 01656 { 1000632, "R_~t_1~s^+" }, 01657 { 1000642, "R_~t_1~c^0" }, 01658 { 1000652, "R_~t_1~b^+" }, 01659 { 1006113, "R_~t_1dd_1^0" }, 01660 { 1006211, "R_~t_1ud_0^+" }, 01661 { 1006213, "R_~t_1ud_1^+" }, 01662 { 1006223, "R_~t_1uu_1^++" }, 01663 { 1006311, "R_~t_1sd_0^0" }, 01664 { 1006313, "R_~t_1sd_1^0" }, 01665 { 1006321, "R_~t_1su_0^+" }, 01666 { 1006323, "R_~t_1su_1^+" }, 01667 { 1006333, "R_~t_1ss_1^0" }, 01668 { 1000010010, "Hydrogen" }, 01669 { 1000010020, "Deuterium" }, 01670 {-1000010020, "Anti-Deuterium" }, 01671 { 1000010030, "Tritium" }, 01672 {-1000010030, "Anti-Tritium" }, 01673 { 1000020030, "He3" }, 01674 {-1000020030, "Anti-He3" }, 01675 { 1000020040, "Alpha-(He4)" }, 01676 {-1000020040, "Anti-Alpha-(He4)" } 01677 }; 01678 01679 int lnames = sizeof(SNames)/sizeof(SNames[0]); 01680 for( int k=0; k!=lnames; ++k) { 01681 m.insert( std::make_pair( SNames[k].pid, std::string(SNames[k].pname)) ); 01682 nameMap.insert( std::make_pair( std::string(SNames[k].pname), SNames[k].pid ) ); 01683 } 01684 static ParticleNameMap mymaps(m,nameMap); 01685 01686 return mymaps; 01687 } // ParticleNameInit() 01688 01689 void writeParticleNameLine( int i, std::ostream & os ) 01690 { 01691 if ( validParticleName( i ) ) { 01692 std::string pn = particleName( i ); 01693 int pid = particleName( pn ); 01694 os << " PDT number: " ; 01695 os.width(12); 01696 os << i << " PDT name: " << pn << std::endl; 01697 // verify reverse lookup 01698 if( pid != i ) { 01699 os << "HepPID::writeParticleNameLine ERROR: " 01700 << " got " << pid << " instead of " << i << std::endl; 01701 } 01702 } 01703 return; 01704 } // writeParticleNameLine() 01705 01706 std::string dyonName( const int & pid ) 01707 { 01708 std::ostringstream pn; 01709 pn << "Dyon^" << digit(nq1,pid) << digit(nq2,pid) << digit(nq3,pid); 01710 if ( digit(nl,pid) == 1 ) { 01711 if ( pid > 0 ) { 01712 pn << "++"; 01713 } else { 01714 pn << "--"; 01715 } 01716 } else if ( digit(nl,pid) == 2 ) { 01717 if ( pid > 0 ) { 01718 pn << "+-"; 01719 } else { 01720 pn << "-+"; 01721 } 01722 } 01723 return pn.str(); 01724 } 01725 01726 std::string qballName( const int & pid ) 01727 { 01728 std::ostringstream pn; 01729 pn << "QBall^" << ((abspid(pid)/100)%1000) << "." << digit(nq3,pid); 01730 if ( pid > 0 ) { 01731 pn << "+"; 01732 } else { 01733 pn << "-"; 01734 } 01735 return pn.str(); 01736 } 01737 01738 int checkForSpecialParticle( const std::string & s ) 01739 { 01740 int chg, chg2, id; 01741 int m = 1; 01742 int len = s.length(); 01743 if( s.substr(0,4) == "Dyon" ) { 01744 std::istringstream var1(s.substr(5,3).c_str()); 01745 var1 >> chg; 01746 if( s.substr(len-2,1) == "+" && s.substr(len-1,1) == "-") m = 2; 01747 if( s.substr(len-2,1) == "-" && s.substr(len-1,1) == "+") m = 2; 01748 id = 4100000 + m*10000 + chg*10; 01749 if( s.substr(len-2,1) == "-" ) id = -id; 01750 return id; 01751 } 01752 if( s.substr(0,5) == "QBall" ) { 01753 int rem = len - 9; 01754 std::istringstream var2(s.substr(6,rem).c_str()); 01755 var2 >> chg; 01756 std::istringstream var3(s.substr(7+rem,1).c_str()); 01757 var3 >> chg2; 01758 id = 10000000 + chg*100+chg2*10; 01759 if( s.substr(len-1,1) == "-" ) id = -id; 01760 return id; 01761 } 01762 return 0; 01763 } 01764 01765 } // unnamed namespace 01766 01767 // 01768 // getPartcleIdMap is the ONLY function allowed to call ParticleNameInit 01769 // 01770 ParticleNameMap const & getParticleNameMap() 01771 { 01772 static ParticleNameMap const & pmap = ParticleNameInit(); 01773 return pmap; 01774 } // getPartcleIdMap() 01775 01776 bool validParticleName( const int & pid ) 01777 { 01778 // check for the special cases first 01779 if ( isDyon(pid) ) return true; 01780 if ( isQBall(pid) ) return true; 01781 01782 static ParticleNameMap const & pmap = getParticleNameMap(); 01783 01784 ParticleNameMap::idIterator const cit = pmap.find( pid ); 01785 return ( cit == pmap.end() ) 01786 ? false 01787 : true; 01788 } // validParticleName() 01789 01790 bool validParticleName( const std::string & s ) 01791 { 01792 static ParticleNameMap const & pmap = getParticleNameMap(); 01793 ParticleNameMap::nameIterator const cit = pmap.findString( s ); 01794 return ( cit == pmap.endLookupMap() ) 01795 ? false 01796 : true; 01797 } // validParticleName() 01798 01799 std::string particleName( const int & pid ) 01800 { 01801 // check for the special cases first 01802 if ( isDyon(pid) ) return dyonName(pid); 01803 if ( isQBall(pid) ) return qballName(pid); 01804 01805 static ParticleNameMap const & pmap = getParticleNameMap(); 01806 01807 ParticleNameMap::idIterator const cit = pmap.find( pid ); 01808 return ( cit == pmap.end() ) 01809 ? std::string("not defined") 01810 : cit->second; 01811 } // particleName() 01812 01813 int particleName( const std::string & s ) 01814 { 01815 static ParticleNameMap const & pmap = getParticleNameMap(); 01816 ParticleNameMap::nameIterator const cit = pmap.findString( s ); 01817 return ( cit == pmap.endLookupMap() ) 01818 ? checkForSpecialParticle(s) 01819 : cit->second; 01820 } // particleName() 01821 01822 // 01823 // list all the defined names 01824 // 01825 void listParticleNames( std::ostream & os ) 01826 { 01827 writeVersion( os ); 01828 os << " HepPID Particle List" << std::endl; 01829 os << std::endl; 01830 01831 // simple: static PartcleIdMap const & pmap = getPartcleIdMap(); 01832 // simple: for( PartcleIdMap::const_iterator cit = pmap.begin(), mend = pmap.end(); 01833 // simple: cit != mend; 01834 // simple: ++cit ) { 01835 // simple: os << " PDT number: " ; 01836 // simple: os.width(12); 01837 // simple: os << cit->first << " PDT name: " << cit->second << std::endl; 01838 // simple: } 01839 int id, i, j, q1, q2, q3, l, m, n; 01840 // special cases 01841 for( id=1; id<101; ++id) { 01842 writeParticleNameLine( id, os ); 01843 writeParticleNameLine( -id, os ); 01844 } 01845 for( i=11; i<1000; ++i) { 01846 id = i*10; 01847 writeParticleNameLine( id, os ); 01848 writeParticleNameLine( -id, os ); 01849 } 01850 // SUSY 01851 for( n=1; n<3; ++n) { 01852 for( q1=0; q1<10; ++q1) { 01853 for( j=0; j<10; ++j) { 01854 id = 1000000*n+10*q1+j; 01855 writeParticleNameLine( id, os ); 01856 writeParticleNameLine( -id, os ); 01857 } 01858 } 01859 } 01860 // technicolor, etc. 01861 for( n=3; n<7; ++n) { 01862 for( q2=0; q2<10; ++q2) { 01863 for( q1=0; q1<10; ++q1) { 01864 for( j=0; j<10; ++j) { 01865 for( m=0; m<10; ++m) { 01866 for( l=0; l<7; ++l) { 01867 id = 1000000*n+100000*m+10000*l+100*q2+10*q1+j; 01868 // save dyons for later 01869 if( !(n == 4 && m == 1) ) { 01870 writeParticleNameLine( id, os ); 01871 writeParticleNameLine( -id, os ); 01872 } 01873 } 01874 } 01875 } 01876 } 01877 } 01878 } 01879 // R-hadrons 01880 for( q3=0; q3<10; ++q3) { 01881 for( q2=1; q2<10; ++q2) { 01882 for( q1=1; q1<10; ++q1) { 01883 for( j=1; j<5; ++j) { 01884 id = 1000000+1000*q3+100*q2+10*q1+j; 01885 writeParticleNameLine( id, os ); 01886 if(q3 > 0 ) id = 1000000+90000+1000*q3+100*q2+10*q1+j; 01887 writeParticleNameLine( id, os ); 01888 } 01889 } 01890 } 01891 } 01892 // miscellaneous generator particles 01893 for( l=0; l<9; ++l) { 01894 for( i=1; i<100; ++i) { 01895 id = 9900000+10000*l+i; 01896 writeParticleNameLine( id, os ); 01897 writeParticleNameLine( -id, os ); 01898 } 01899 for( q3=0; q3<10; ++q3) { 01900 for( q2=1; q2<10; ++q2) { 01901 for( q1=1; q1<10; ++q1) { 01902 for( j=0; j<10; ++j) { 01903 id = 9900000+10000*l+1000*q3+100*q2+10*q1+j; 01904 writeParticleNameLine( id, os ); 01905 writeParticleNameLine( -id, os ); 01906 } 01907 } 01908 } 01909 } 01910 } 01911 // diquark 01912 for( i=11; i<100; ++i) { 01913 for( j=0; j<10; ++j) { 01914 id = 100*i+j; 01915 writeParticleNameLine( id, os ); 01916 writeParticleNameLine( -id, os ); 01917 } 01918 } 01919 // mesons 01920 for( q2=1; q2<10; ++q2) { 01921 for( q1=1; q1<10; ++q1) { 01922 for( j=1; j<10; ++j) { 01923 for( m=0; m<9; ++m) { 01924 for( l=0; l<10; ++l) { 01925 id = 100000*m+10000*l+100*q2+10*q1+j; 01926 writeParticleNameLine( id, os ); 01927 writeParticleNameLine( -id, os ); 01928 id = 9000000+100000*m+10000*l+100*q2+10*q1+j; 01929 writeParticleNameLine( id, os ); 01930 writeParticleNameLine( -id, os ); 01931 } 01932 } 01933 } 01934 } 01935 } 01936 // baryons 01937 for( q3=1; q3<10; ++q3) { 01938 for( q2=1; q2<10; ++q2) { 01939 for( q1=1; q1<10; ++q1) { 01940 for( j=1; j<10; ++j) { 01941 for( m=0; m<9; ++m) { 01942 id = 10000*m+1000*q3+100*q2+10*q1+j; 01943 writeParticleNameLine( id, os ); 01944 writeParticleNameLine( -id, os ); 01945 } 01946 } 01947 } 01948 } 01949 } 01950 // pentaquarks 01951 for( l=1; l<9; ++l ) { 01952 for ( m=1; m<9; ++m ) { 01953 for( q3=1; q3<9; ++q3) { 01954 for( q2=1; q2<9; ++q2) { 01955 for( q1=1; q1<9; ++q1) { 01956 id = 9*1000000+l*100000+m*10000+1000*q3+100*q2+10*q1+2; 01957 writeParticleNameLine( id, os ); 01958 writeParticleNameLine( -id, os ); 01959 } 01960 } 01961 } 01962 } 01963 } 01964 // ions 01965 for( i=1; i<3; ++i) { 01966 for( m=1; m<5; ++m) { 01967 id = 1000000000+10*m+10000*i; 01968 writeParticleNameLine( id, os ); 01969 writeParticleNameLine( -id, os ); 01970 } 01971 } 01972 // some Dyons 01973 for( q3=0; q3<2; ++q3) { 01974 for( q2=0; q2<4; ++q2) { 01975 for( q1=0; q1<10; ++q1) { 01976 ++q1; 01977 id = 4110000+1000*q3+100*q2+10*q1; 01978 writeParticleNameLine( id, os ); 01979 writeParticleNameLine( -id, os ); 01980 id = 4120000+1000*q3+100*q2+10*q1; 01981 writeParticleNameLine( id, os ); 01982 writeParticleNameLine( -id, os ); 01983 } 01984 } 01985 } 01986 // a few QBalls 01987 for( i=1; i<199; ++i ) { 01988 for( m=1; m<10; ) { 01989 id = 10000000+10*m+100*i; 01990 writeParticleNameLine( id, os ); 01991 writeParticleNameLine( -id, os ); 01992 m += 3; 01993 } 01994 i += 11; 01995 } 01996 return; 01997 } // listParticleNames() 01998 01999 } // HepPID